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ABSTRACT 

Habitat _ election and movement patterns of coppei·head (A gkistrodon contortrix) in fire-
altered landscapes 

Fire can functionally alter habitat availabl t 'ldl '·c h. . . e o w1 11 e t 10ugh mod1ficat1on of 

structura l and micro-climatic characteri stics Because o·f th · 1· b h · I · e1r re 1ance on e av1ora 

thermoregul ation and crypsis, reptiles can be especiall y susceptible to these post-fire 

changes in hab itat characteri sti cs. The copperhead (Agkis trodon contortrix) is a widely 

di stributed snake fo und throughout the southeastern US, and is fo und in a variety of 

habitats. Previous studies suggest that copperheads decrease in abundance after fire 

events, and in order to investigate the specific drivers influencing these changes in 

abundance, we radio-tracked 14 adult male copperheads captured in burned and unburned 

habitats at Land Between the Lakes National Recreation Area, KY. Copperheads were 

tracked during the active season (May-October) of 2014 and 2015 . Home ranges were 

ca lculated by minimum convex polygons (MCP) and fixed kernel density estimation 

(KD E). Movement patterns were assessed by estimating the distance moved per day. At 

each copperhead relocation, a suite of structural and environmental habitat variables were 

recorded and each relocation point was paired with a randomly selected point to assess 

habitat availability. Copperheads in burned areas were more likely to use shrub thickets 

as cover, while those in unburned areas were more like ly to use leaf and woody debris 

pil es. There was no signi fica nt di fference between est imated distance moved per day of 

b t MCP and KDE home ran°es of 
copperheads in burned and unburned areas u b 

. •fi ti laroer than those in burned areas. 
copperheads in unburned areas were s1g111 ican Y b 

. . ft fi re we suggest that fire-altered 
Because of increased habitat heterogeneity a er , 



landscapes may be more suitable hab itat fo r copperheads than landscapes lack ing 

disturbance. 
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Chapter I 

Introduction 
Disturbances are a natural part f . 0 ecosyStem succession and functionality (Wh ite 

J 979, Sousa 1984). Landscapes subjected to period · ct · t b . 
1c 1s ur ances often conta111 a patchy 

mosaic of varying hab itat structure and environment I ct · · ( a con 1t1ons Baker 1992). These 

heterogeneous landscapes typically have the capacity to s ·t ·ct ct · · f uppo1 a w1 er 1vers1ty o 

species than homogeneous landscapes due to the greater va1-1·ab·1·t · ·1 bl 1 1 y 111 ava1 a e resources, 

resulting in greater niche diversity (Bazzaz 1975, Tews et al. 2004). Tests of the 

intermediate disturbance hypothesis support this contention, and ecological communities 

that exhibit moderate amounts of di sturbance tend to be the most speciose (Connell 1978, 

Roxburgh et al. 2004). For some species, a predictable or recu1Ting regime of disturbance 

is likely necessary for long-term persistence. Thi s is especiall y true of species 

assemblages in disturbance-prone landscapes, such as floodpl ains (Ward 1998), 

grasslands (Belsky 1992), and fire-adapted systems (Hawkes and Menges 1996, Simon et 

al. 2009). More genera li st species may persist, or even thri ve, in areas where the natural 

disturbance regime is altered or eliminated. This can potentially be explained by the wide 

niche breadth often attributed to genera list spec ies, allowi ng for persistence in a di vers ity 

of habitat types and, in some cases, permitting a large geographic range (S latyer et al. 

20 13). 

. . . t' f disturbance which can alter structural and Fire 1s a natura ll y occurring orm o , 

. . c.. and intensity. Low-intensity fires of 
environmental conditions dependmg on 11 equency 

. throuah reduction of leaf litter, woody 
moderate frequency can mod ify the landscape 0 

. . I I s romotion of understory herbaceous 
debri s, and woody stem regeneration, as we a P 



plant commun iti es (Hu tc hin son et al. 2005) H. . . 
· igh-mtens1ty fires can often be 

ca tastrophi c, resul ting in die-offs of entire t d f 
s an s O · trees and radically reducing canopy 

closure (Vose et al. 1999), whereas low frequ fi . 
ency ires can mcrease the growth of dense 

thickets of woody stems (Peterson and Reich 200 I) 1 . . . 
• nc1 eased exposure to solar radiation 

as well as reduction in surface structure (i e leafl ·tt . d . 
· · 1 e1 an woody debris) can also result 

in increased soil temperature and reduced soil moistu · fi. 
1 

. d 
re m 11 e-a te1 e areas (Iverson and 

Hutchinson 2002). 

The wildlife response to fire-altered landscapes has be I t. I II ct · ct · en re a 1ve y we -stu 1e 111 

a di verse array of taxa, including inve11ebrates (Wikars and Schimmel 2001 ), amphibians 

(Pilliod et al. 2003 , O'Donnell et al. 201 5), birds (Bock and Block 2005 , Saab and 

Powell 2005 ), and small mammals (Ford et al. 1999, Eby et al. 20 14). Reptiles have also 

been we ll studied, with the majority of previous work foc used on change in species 

abundance and di versity in post-fire landscapes (M ushinsky 1985 , Perry et al. 2009, 

Sutton et al. 201 3). It is likely that many of these changes in abundance and di vers ity are 

dri ven by the alteration of species-specific tra its in response to fi re. In the cases of pygmy 

bluetongue li zards (Tiliqua adelaidensis) in South Austra li a (Fenner and Bull 2007) and 

Orsini 's vipers (Vipera ursinii) in the French Alps (Lyet et al. 2009), a reduction in body 

condition immediately after fire is directl y attributed to measured changes in prey 

ava ilability and greater visibility to potential predators. Smith et al. (200 1) observed a 

· · t· deraround refu 0 ia in three spec ies of decrease in movement and an mcrease 111 use o un o 0 

I d Developina a better understanding montane rattl esnakes after fire altered the an scape. 0 

. h b I vior of resident spec ies may shed light 
of how fire-related di sturbances mfluence t e e ,a 

. (I community compos ition. 
onto the spec ific dri vers of changes m rep 1 e 



Historica ll y, much of the soutl . . 
1easte1n United St t d a es un erwent a periodi c cycle of 

ti res ignited by lightning strikes (Abrams 1992 W 
' aldrop et al. 1992, Frost 1998). There 

is also ev idence of fire being used consistent! 
Y as a land management tool by pre-

Columbian Nati ve Americans throughout much f h 
0 · t e southeast (Delcourt and Delcourt 

] 997). The historic cyc le of fire-related distu b . 
r ance was extensively altered in the region 

after European settlement, with widespread fire s • 
uppress,on eventually adopted as the 

dominant land management strategy (Pyne l 982 Steph d R h 200 , ens an ut 5). Onl y recently 

have land managers in the southeastern United States beo · II d fi bun usmg contro e ire, 

refetTed to as prescribed fire, as a technique to replicate histori c fire frequencies and 

increase local species diversity (Pyne et al. 1996). The application of prescribed fi re to 

the landscape all ows for the opportunity to investigate how certain species respond to fire 

as a fo rm of disturbance. 

The copperhead (Agkistrodon contortrix) is a geographica ll y widespread spec ies 

of viperid snake, and is considered a genera li st where it occurs in the southeastern United 

States (Ernst and Ernst 2003). The ability to persist in both fire-mainta ined and fire­

suppressed forest habitats make copperheads an idea l spec ies to investi gate behav ioral 

responses to fire. Previous research suggests that copperheads are either less abundant in 

areas impacted by prescribed fire (Howey 20 14) or remain large ly unaffected (Pe1Ty et al. 

2009, Sutton et al. 201 3). To investigate the behavioral response of copperheads to fi re­

assoc iated habitat alteration, habitat selection and movements in fire -altered and fire-

d B d the prev ious findin °s suggesting a suppressed landscapes were compare . ase on ° 

. . . . . . • redicted that copperheads would 
pos1t1 ve relat1 onsh1 p with unburned habitat, it was P 

.
1 

bl . · fire-suppressed areas and that 
se lect habitats most similar to those ava i a e 111 



11
,ovcinents would be greater in distance and frequency in potentially less preferred fire­

altered areas. 



Chapter 11 

Methods 

Study site 

All aspects of thi s study were conducted at L d 
8 

. 
an etween the Lakes National 

Recreation Area (LBL) in Trigg County Kentucky LBL · t th d f h , • 1s a e e ge o t e western 

Highland Rim of the Interior Low Plateaus phys iographic region (Fenneman 1938), 

which typica lly exhibits hilly terrain with steep dry slopes. The majority of LBL is 

fo rested, with upland sites being dominated by secondary oak-hickory forest (C lose et al. 

2002), but histori ca lly much of LBL consisted of open oak-savanna maintained by 

grazing megafauna and peri odi c fire (Franklin et al. 2002) . Act ive fi re suppression, 

beginning in the 1950s, has lead to widespread succession towards more closed-canopied 

forest (Franklin et al. 1993). As a result, most of LBL ha not been burned in 60-80 years 

(Franklin 1994). In order to improve recreation opportuniti es and restore histori c oak­

savanna habitat, prescribed fire has been recentl y adopted as a land management too l 

th roughout LBL (US DA Forest Service 2004). In April 2007 and aga in in September 

20 IO, an area of approx imately 1,000 ha (Frankli n Creek Burn Area; Figure I) was 

burned using a helicopter to drop plasti c incendiary spheres fi ll ed \\·ith potass ium 

(H 201 4) Al thou ah fronta l fire intensity \\'as not measured at the permanganate owey . o 

. 1 d . f rescri bed fires and the genera ll y low time of either burn, due to the contro l e natut e o P ~ 

. 1.k I of IO\\' intensity (A lexander 1982, slope angle of the burn sites, both burns wet e 1 e Y 

Franklin et al. 2003). 

Radio telemetry . 1 h d survey of appropriate habitat .. . II I ated via ,ap azar Copperheads were 1111t1a Y oc 

. k 8 . Area (Burn) and adj acent . . . h F ·ankl Ill Cree u1 n and nocturnal road-cru1 smg 111 t e 1 



unburned areas within three km of the Fr kl" C· 
an in ieek Burn Area (Contro l) from May 

2014 through Ju ly 20 15. At time of capture s 
' nout-vent length (S VL) and tai l length (TL) 

or each snake was measured to the nearest I mm b d 
, 0 Y mass was measured to the nearest 

I 2: , and sex was detennined by cloaca! probing s k . 
..., · na es were u111quely marked by sub-

dermal injection of a Pass ive Integrated Transponder (PIT t B. k · 
ag, 10mar Inc., Boise, ID). 

Onl y male snakes were used in thi s study because of kno · t I d·f:c · wn 111 ersexua 1 1erences m 

movements and thermal biology of temperate zone pit-vipers (Fitch 1960, Reinert and 

Zappalorti 1988, Shine et al. 2003). Copperheads were transported to a fi eld laboratory 

(Hancock Biologica l Station), where they were surgicall y implanted with a radio 

transmitter (S I-2, Holohil Systems Ltd., Carp, ON, Canada) that weighed no more than 

7% of body mass . Surgeries were conducted fo llowing the methods of Reinert and 

Cundall ( 1982) and snakes were allowed 24-48 hours to recover from surgery before 

release at the point of capture. Snakes were thereafter relocated every 2-5 days from mid 

May through earl y October (active season) between 9:00-1 8:00 hours. At each snake 

location, Uni versal Transverse Mercator (UTM) coordinates were recorded in NA D83 

datum using a GPSmap 60CSx (Garmin International Inc. , Olathe, KS). All locations 

were recorded to an accuracy of ~ 3 meters. Sometimes snakes crossed over between 

·d d · h B or Contro l when they spent at least habitat types and snakes were cons1 ere e1t er urn 

65% of time in one of the habitat types. 

Microhabitat Ana~ysis . f 18 environmental and hab itat structura l 
During the 20 14 fi eld season a suite 0 

. T bl 1) A 1-m2 quadrat was established 
variables were recorded at each snake locatwn ( a e · 

. the habitat available for use by copperheads, 
centered on the snake location. To measure 

. h . do1nly se lected point. Random points . . · ed w1t a 1an each snake relocat ion pomt was pair 



were se lec ted by wa lking a randomly se lected straight-line di stance (within 60 111) away 

from the snake point at a randomly chosen compass bearing. At this random point, the 

same suite of environmental and habitat structural variables were also measured (Table 

I). Cover objects were defined as any physical object a copperhead could conceivably 

use to fully or partially seek refuge. Environmental and hab itat structural variables for 

snake and random locations in burn and unburned areas were compared using repeated­

measures A NOVA with indi vidual snake and random point grouping as a repeated factor, 

followed by post-hoc Tu key's HSD comparison of mean and control of false discovery 

rate (Benjamini and Hoc hberg 1995). 

Movements and Home Range 
Distance moved per day \\'as calcul ated for each copperhead as the distance 

between relocations divided by the number or days elapsed bet\\'een relocat ions. Distance 

moved per day \Vithin the burn area \\·as compared to those captured out side the burn area 

using repea ted-m easures ANOVA \\·ith incli\·idual snake being the repeated factor. 

Mo\'cments or :'S 3 rn \\·c,-c c.\cluclccl from analy, e, clue to location accuracy. Home range 

size or radio-tracked copperheads \\·as c .ilculatccl using the I 00% minimum convex 

polygon method (MCP: Burt I 9-+3) as \\Cl! as 95° o and 50% 11.\ed kernel density 

estimators (KD E: Wo rt on 1989) using a least square cross \·alida ti on smoothing 

parameter (Scaman and Pmwll 1996). Horne range si;:cs or copperheads captured within 

the burn area \\ere compared to those captured outside the burn area using a general 

linear mode l,\\ ith site (Burn or Control) as the main effect. indi\·idual snake and year 

tracked as random effects, and duration or acti\e season radio-tracking used as a 

covariate. Home range estimation and mo\ ernent patterns\\ ere calculated usi ng 

Geospat ial Modeling Em ironment (Spatial Ecology LLC, Toronto, Canada) and ArcGIS 



10.2.2 (ES RI , Redlands, CA). All stati stica l analyses were conducted using JMP version 

IO (SAS Insti tute Inc., Cary, NC) and test were considered signifi cant using a = 0.05 . 



Chapter Ill 

Results 
A total of fi ve copperheads were captured in burn areas (Burn Snakes) and nine 

from unburned areas (Control Snakes). Fi ve copperheads (2 Burn Snakes and 3 Control 

Snakes) were radi o-tracked during both the 2014 and 201 5 fi eld seasons due to losses 

from overwintering mortality and additions resulting from new 2015 captures. 

Microhabitat Analys is 

Of the 18 environmental and habitat structural vari ables recorded fi ve variables 
' 

were signifi cantly different among the fo ur sampling groups (Table 2). Burn Random 

locations exhibited significantl y higher surface temperature than Control Snake locations 

(FDR adjusted P = 0.04; Figure 2). Contro l Snake locati ons exhibited greater surface 

woody debris cover that Contro l Random locations (FDR adjusted P = 0.0 I; Figure 3). 

Control Snake locations exhibited deeper leaf I itter than Contro l Random locations (FDR 

adjusted P = 0.04 ; Figure 4). Burn Snake locations exhibited greater woody stem density 

than both Burn Random locations and Contro l Random locations (F DR adjusted P = 

0.009; Figure 5). Burn Snake locations were closer to cover than Control Random 

locations, whil e Contro l Snake locati ons were closer to cover than both Burn and Contro l 

Random locations (F DR adjusted P = 0.002; Figure 6). 

Home Range and Movements 
All copperheads included in the analys is of movement and home range were 

rad io-tracked fo r a minimum of 64 days during the spring and summer seasons. No 

significant difference between Burn Snakes and Contro l Snakes was fo und when 

comparing approx imate di stances moved per day (R:! = 0.26, F, 11 = 0.03, P = 0.87). 

Home range sizes varied by indi vidual, and overa ll KD E home range sizes were larger 



than those measured via MCP (Table 3). Duration of acti ve season radio-tracking was 

fo und to have a signifi cant effect on home range size (MCP P = 0.002, 95% KD E P = 

0.0006, 50% KD E P = 0. 000 I), while year tracked did not (MCP P = 0.64, 95% KDE P 

= 0.62, 50% KD E P = 0.56; Tabl e 4). After contro lling fo r the significant effect of 

tracking durati on (model covariate), home ranges of Contro l Snakes were fo und to be 

signi fica ntl y larger than those of Burn Snake for all home range estimators (MC P R~ = 

0.66, F1.1" = 5.69, P = 0.04; 95% KDE w' = 0.60, F1.1- = 11 .9, P = 0.008; 50% KD E R:! = 

0.70, F1.1- = 19.5, P = 0.003 ; Table -+ ). 



Chapter IV 

Discuss ion 
The resul ts of th is study suggest that landscape alterations resulting from 

prescribed fire management change the manner in which copperheads interact with their 

environment. Even with a small sample size and short study duration, significant 

differences were observed in terms of home range size and habitat se lection between 

copperheads in burned and unburned areas. 

Microhabitat Analvs is 

Point measurements of temperature were co llected to compare the thermal 

environment of burned and unburned areas. Ambient and so il temperatures did not diffe r 

among the sampling locations, but measured di ffere nces in sur face temperature suggest 

that copperheads are se lecting cooler locati ons within the landscape and that the forest 

fl oor of burned areas is warmer than that of un burned areas. A more complete 

representati on of the thermal environment would li ke ly req uire constant temperature 

measurement. 

Copperheads in both burned and un burned areas were almost always fo und in 

close prox imity to some type of cover. Throughout much of the ir active season, 

copperheads are primaril y noc turnal (Ernst and Ernst 2003) and likely se lect suffi cient 

cover in order to retreat during the day li ght hours. Prev ious studies have shown that some 

spec ies of nocturnal snakes v\' ill ac ti ve ly se lect diurnal retreat si tes based on spec ific 

criteri a regarding the temperature and structure of co\·er (Webb et al. 2004). Our res ults 

suggest that copperheads in unburned areas are se lecting locati ons with more woody 

debri s and deeper leaf litter, while copperheads in burned areas are se lecting locations of 

dense woody stems. This observed variation in cover se lection might be representati ve of 



a differin g ava ilability of diurnal retreat sites in burned d b d Al h h ~ an un urne areas. t oug 

anecdotal in nature, our fi eld observa ti ons durino this stud •t th · · · I o y suppo1 1s assumption, wit 1 

copperheads in unburned areas often seen assoc iated with piles of leaves and woody 

debris adj acent to downed trees and canopy gaps, while copperheads in burned areas 

lacking leaf litter and debri s were often seen associated with dense thickets of early 

successional shrubs, such as blackberry (Ru bus sp.) and poison ivy (Tox icodendron 

radicans). 

Movements and Home Range 
No observable difference was noted between copperhead movements in burned 

and unburned areas using estimated di stance moved per day as a metric of fine scale 

spati al habitat use. Although thi s method has been extensive ly used in movement studies 

of snakes (Fitch and Shirer 197 1, Reinert and Kodrich 1982, Gera ld et al. 20 12), the use 

of linear di stances based on fix ed-point data may not be the best approximation of snake 

movement rates because they do not take into account the potential tortuos ity of the 

an i ma I's movement. Secor ( 1994) compared I in ear mea urement of mo\·ements based on 

fix ed-point data to true exten t of movement based on track left in the sand of 

sidewinders ( Crota/11s cerostes) and fo und that linear measurements underestimated the 

full ex tent of movement by up to 60 percent. Based on data co llected dur ing te lemetry 

studies of four ecologica ll y di st inct spec ies of fri can snakes (Bit is oriemans, B. 

schneideri, Prthon nowlensis, and Gonionowphis copensis), Alexander and Maritz 

(20 15) argue that measurements of mo\'ement di stances based on fix ed-point data are 

strongly impacted by , ariations in sampling frequency. It is poss ible that the sampling 

interva l used in thi s study (2-5 days) influenced measurements of dail y linear di stances to 

a point where they \\'ere no longer accurate representations of snake movement. 



Many factors ha th · · ve e capacity to influence the space use of an animal. In snakes, 

intrinsic facto rs, such as body size and sex (Smith et al. 2009, Glaudas and Rodriguez­

Robles 2011 , Hyslop et al. 2014), have well-documented influences on intraspecific 

variations in home range size. Extrinsic factors , such as habitat suitability, also have the 

potential to influence the amount of area used. In comparatively resource-poor 

landscapes, animals may need to use larger geographic areas to acquire enough resources 

to execute basic life functions . Kapfer et al. (20 I 0) found that bull nakes (Pituophis 

cant[/er) in landscapes containing high proportions of less suitable habitat (agricultural 

fields and closed-canopy fores ts) have significantl y larger home ra nges than tho e in 

landscapes containing higher proporti ons of more uitable habitat (b luff fa ce and oak 

savanna) . Si111il arl y, Halstead et al. (2009) found that coach\\·hips ( Co/11her.flagel/11111) 

utili zing greater proportions or the study population' , prel'crred habitat type (F lorida 

scrub) ex hibited significantl y s111 alkr home ra nge sizes. When a1 plying thi s as umption 

01· s111 all er home range size impl yi ng greater habitat .' uitability to our study, it can be 

suggested that since copperhead. in the bum areas exhibited smaller home range , bum 

areas 111ay be more suitab le hab itat for copperheads tlwn unburned areas. Potential factor 

inllucncing the degree or habitat suitability exhibited by a particular landscape can be 

clinicult to quantiry. Prey density. predation pressure. thermoregulatory opportunitie . 

and rcl'uge a\·ailability ha\·e all been suggested as potential factor. mediating mo\·ement 

behaviors base<..! on habitat suitability in snakes ( Baxley and Qualls 2009. Hal tead et al. 

2009, Hoss et of. 20 IO. Kapkr ct of. 20 I 0). Preliminary linding from a study conducted 

at thi s same site suggest that during most or the spring and sum mer copperheads do not 

di splay owrt thermoregulatory beha\ iors (Muelle r. unpublished data), and are therefore 



likel y not bas in g movement behav iors around asses ,·n ti . . I . · · 
~ , g 1e111101 egu atory opportun1ll es al 

that particular time of the year. In our study, refuge ava il ab ility was quantified by 

measuring cover type and density. Due to their strong reliance on crypsis (Ernst and Ernst 

2003), refuge avai lability is likely a major factor when characterizing copperhead habitat 

suitability. By frequently using shrubby thickets as cover, copperheads in burned areas 

may not need to trave l very far to find appropriate diurnal retreat locations. With 

unburned areas having reduced mid and understory vegetation , copperheads in those 

areas may be forced to trave l farther to find cover in the form of leaf and woody debris 

piles. 

It is also likely that refuge type and availability are not the only fac tors 

influencing copperhead movements at these locations. Although a dietary genera li st, in 

thi s reg ion previous studies have found that the majority of copperhead diet is composed 

of rodents (Garton and Dimmick 1969). The population dynamics of many rodents are 

primarily dri ven by oak mast production and avai lab ility (Ostfeld et al. 1996, Wolf 1996, 

Feldhamer et al. 2002). The presence of fire di sturbance has been fou nd to promote oak 

regenerati on by arresting succession towards mes ic maple-dominated fo rests (Abrams 

1992, Frank lin et al. 2002). Because of thi s, it is poss ibl e that the burned areas in LBL 

contain a greater proportion ot· acorn-bearing oaks, and therefore would support greater 

densitie of mammalian prey spec ie . It must also be taken into account that although all 

copperheads in thi s study were male, their movements \\'ere likely strongly influenced by 

the ab undance and di stributi on of fe male copperheads within their area of ac ti vity (Smith 

et al. 2009). 



Co11c/11sio11 

It was initi all y predi cted that, based on prev ious studies of abundance, 

copperh eads would likely prefer areas unaltered by fire di sturbance. However, our results 

suggest that fire-altered landscapes are likely more suitable habitat fo r copperheads. 

Although seemingly contradictory, it is poss ible that both arguments are valid. Previous 

studies of post-fire copperhead abundance in which we based our prediction were 

conducted one to two years after prescribed burning was implemented (Pe1Ty et al 2009, 

Howey 2014) . These earl y success ional landscapes were sampled immediately after the 

burn and may have initiall y been poor habitat fo r copperheads. Our study of copperhead 

movements and habitat se lection was conducted fo ur to fi ve years after prescribed 

burning was implemented. The greater amount of time since the landscape was burned 

has allowed much of the burned areas to progress into a mid-successional landscape with 

dense thi ckets of shrubs, prov iding ab undant cover fo r copperheads. The persistence of 

such di ffe rences, even aft er hab itats have begun to recover, indicates the long-lasting 

effects habitat alterations may have on the eco logy of even genera li st spec ies, like 

copperheads. When considering both our resul ts as we ll as those of prev ious studies, it is 

likely that the frequency of landscape disturbance is eq uall y as an important fac tor as the 

absence of di sturbance when characteri zing the preferred hab itats of copperheads. 



Chapter V 

Tables and Figures 

- Franklin Creek Burn Area 

Roads 

Figure 1. Map di splay ing the Franklin Creek Bum Area and adj acent unburned locations. 
Area in red was burned in April 2007 and September 20 IO and adj acent wooded habitat 
had not been burned 2 60 years . 



Table 1. Environmental and structura l vari ables co ll ected at each copperhead and random 
location. 

Variable 

A111 bient Temperature 

Surface Te111 perature 

Soi l Te mperature 

Canopy Closure 

Sur face Leaf Litter Cover 

Surface Woody Debris Cover 

Surface Herbaceous Cover 

Surface Grass Cover 

Surface Bare Cirou nd C01-cr 

Su rface Rock Cover 

l.caf Li1tc1· Depth 

\\ ·ood) Stem Dcnsit) 

Wood) Stem I ki !:,d11 

Distance 10 Cn1 er 

Co1 cr I !eight 

(\ll'cr I .c11g1h 

Di stann: Ill ()I crstnr~ r rcc 

l)is1a11 cc Ill l 'n<lcrston Trcc 

Sa mpling meth od 

Temperature (°C) of air at I 111 above nake 

Temperature (°C) of substrate surface within \ 0 c111 of snake 

Temperature (°C) of soil within 10 cm of snake 

% canopy cl osure 111easured using a spherical densio111eter 

% leaf litter cover II ithin \-111 : quadra t 

% 11 00d) debris co1 er 11 ithin 1-m' qu:idrat 

0 o herb ( 11011-11 ood) plants) COi er II ithin \-111: quad ra t 

0 o gras, co1 er II ith in 1-m' quad rat 

0 o barc ground m i er II ithin \ -111 : 4uatl rat 

0 o roc k co, cr II ithi n l-111 : 4uatl ra t 

Dcpth (c m) oflcaf \i ttcr 11 ithin 10 c111 of,nakc 

\ ntal numbc: r of 11oo<l~ '1c11i-, 11 ithin \-111 : 4uadra t 

\ lc igh t ( 111 J of tal \c:,t II oo<l~ ,tcm " ithin I -111 : 4ua<lrat 

Di, tanc, ( 111) tll 110:arc:,t Cl" er nhjc,t 

I lc ight (c111) nf nc:.irc,t e111 l'r nhjc:ct 

I cngth (cm) nf ncan:,t ,:01 i:r ohjl'Ct 

l) i\lancc tin) Ill ncan:,t trcc 1 . ~ cm di.1111 , tc: r at brca,t hcight (DBI I) 

l) i, tanc c (m) tn nc:arc:,t trc:c: · 7
.~ cm DBII anti • 2 111 in hc: il!ht 



Table 2. Least square mea n va lues a nd sta nda rd e rror (SE) of env iro nmenta l and structura l habita t vari ab les measured at snake and 
random loca t ions . Least square mean va lues hav ing diffe re nt superscript a re s ign ifi cantly differe nt based on re peated-measures 
ANO VA and post-h oc T ukey ' s HS D tests. P-values were adjusted to contro l for fa lse d iscovery rate. Var iab les that di ffe red 
s ignifi cant ly a re in bo ld . 

Burn Snak<' (n ~ 7YJ Co 111ro l S nake (11 = 138) Burn Randon, (n = 75) Cunlro l Randu 111 (n = 138) 
Voriuhl<' M <!a11 SE Mean SE lvlea, 1 SE 1vlea11 SE ANOVA re.mfrs p FDR adj P 

A mbient Temperalllre (°C) 27.9 '' 04 27 .0 '' 0. 3 28. 1 A 0.4 26.9 '' 0.3 F, .➔.1u= 2.8 1 0. 07 0. 1-1 

Surface Tcmpc rntu ,·c (°C) 28. 1 '" ' 0.6 26.7 11 0.4 29.5 " 0.6 27.7'' 11 0.4 FJ.HU = 4.87 0.0 1 0.0-1 

Soi l Temperature (°C) 18.-1 '' 0.3 I 7.4 " 0 .2 18.4 " 0 .3 17.8 '' 0. 2 F,_.130 = 3.28 0.04 0.12 

Canopy C losure(%) 8 1.9" -1 .2 84 .2 '' 3.4 75.6 '' 4 .2 80. 1 A 3.4 F3_.,0 = 0. 88 0.46 0.59 

Surface L ea l· Lit ter Cover(% ) 42.2 '' 5.6 52.2 '' 4 .8 44 .3'' 5. 7 55. 1 A 4.7 F; ,➔ 30 = 2.73 0.05 0. 13 

Surface Wood y Debris Cove,· (0
/,,) 18.4" 11 2.9 24.9" 2.4 16.2 "11 3. 1 I I. I II 2.4 FJ.HU = 5.86 0.002 0.0 1 

Sur face I lerbaecous Cover(% ) 23.6 ' 2.6 15.7 " 2.0 17.6"" 2.7 I 5.7 '"' 2.0 F 3_.,0 = 2. 70 0.06 0. 14 

Surlace G rass Cov<.: r (% ) 20.J i\ 6. 1 10.8 " 5.5 12.5'' 6.2 19.0" 5.5 F, .➔ , u = 1.68 0. I 8 0.2 7 

Sur face O pen Ground Cover (% ) 6.2 0 ' 5.6 6.76" 5.2 13.1" 4.6 16. 1 '' 4.4 F3 .• 13o= 1.04 0.38 0.53 

Surran: Rock Cover (% ) 5.68 '' -1 .-1 9. 16 '' 3.7 19.7 " 3.9 13.7 " 3 .5 F,.m= 2.05 0. 12 0.69 

Leaf Littc ,· Depth (cm) 7.14 " 11 1.0 9.7 1" 0.7 6.53''" 1.0 6. 10 11 0.7 F3 ,➔3 11 = 4.95 0.008 0.04 

Woolly S tem Den sity 7.08" 0.5 5.1 0 "" 0.4 4.80 11 0.6 3.54 11 0.4 F3.m = 9.00 0.00 1 0.009 

Woody Stem Height ( 111 ) 2.0-1 ' 0.5 2.67" 0.4 0. 95 " 0. 5 1.65 '' 0.4 F.1.'1u = 2.5 7 0.09 0. 16 

Distance to Cover (m) 0.72"" 0.2 0.60 " 0.1 1.29 II( 0. 1 I. SS C 0.1 F3_4311 = 11 .4 < 0.000 1 0.002 

Cover I !e ight (cm) 23.9 '' 4 .0 26.5'' 3. 1 23. 0 '' 4 .0 2 I . I" 3.1 F , .➔ ,u = 0.52 0.6 7 0.75 

Cover Length (cm ) -195 ' 60 528" 45 502" 6 1 440" 45 F3 _.130 = 0.6 7 0.58 0.69 

D istance lo Overstory T ree (m ) 3.66" 0.6 3.72 " 0.5 3.57 " 0. 6 3.23 1

' 0.5 F3_"3o = 0.2 1 0.89 0.9-1 

Distance to U nderstory T ree ( 111 ) 1.59 '' 0.4 1.44" 0.4 1.64 " 0.4 1.74 '' 0.4 F, .• ,o = 0. 13 0.94 0.9-1 
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Figure 2. Interaction plots comparing the mean and standard error of surface temperature 
measured at snake and random locations. Mean va lues di splay ing di ffe rent letters are 
significant ly different based on repeated-measures ANOVA and post-hoc Tukey's HSD 
tests. Burn Random locations exhi bited significantly higher surface temperature than 
Contro l Snake locati ons (F DR adjusted P = 0.04) . 
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Figure 3. Interaction pl ots comparing mean and standard error of sur face woody debris 
cover measured at snake and random locations. Mean va lues di spl ay ing di fferent letters 
are signifi cantly different based on repeated-measures ANOVA and post-hoc Tukey's 
HSD tests. Control Snake locati ons exhi bited greater sur face woody debris cover that 
Contro l Random loca ti ons (FDR adjusted P == 0.01 ). 
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Figure 4. Interac tion plots comparing mean and _ tandard e,,-or or lea r litter depth 
measured at snake and ra ndom locations. Mean ,·alues di sp lay ing different letters are 
signifi cant ly diffe rent based on repeated-meas ures A OV and po t-hoc Tukey 's HSD 
tests. Contro l Snake locati ons exh ibi ted deeper leaf litter than Cont ro l Random locati ons 

(FD R adjusted P = 0.04) . 
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Figure 5. Interacti on plots comparing mean and standard error of \\·oody . tem density 
measured at snake and random location . . Mean ,·alues displaying different letter. are 
signilicantl y different based on repeated-measures A OV and po.1-hoc Tukcy" HSD 
tests. Burn Snake loca ti ons C\hibited greater,, oody stem density th an both Burn Random 
locations and Control Random locations ( FD R adjus ted P = 0.009) . 
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Figure 6. Interact ion plots comparing mean and standard etTor of distance to cover 
measured at snake and random locations. Mean va lues di splaying diffe rent letters are 
significant ly different based on repeated-measures ANOY A and post-hoc Tukey's HSD 
tests. Burn Snake locati ons were closer to cover than Control Random locations, whi le 
Contro l Snake locations were closer to cover than both Burn and Contro l Random 
locati ons (FDR adjusted P = 0.002). 



Table 3. Year tracked, location of capture, number of active season days tracked, and 
home range size estimations using minimum convex polygon (MCP) and kernel density 
estimates (KDE), and mean distance moved per day of copperheads included in study. 
All areas are given in hectares and all distances given in meters. 

Location of Number of day.1· 
MCP!haJ 95% KDE rhaJ 50% KDE (haJ Mean distance Snake ID rear tracked 

ca lure tracked 
mowdldm· /m) AGCOI 2014 Bum 123 9.2 18.4 .J.5 26.6 

AGC02 2014 Control 127 10.4 29.2 8.4 20 
AGC03 2014 Bum 117 I 2.7 0.8 8.6 
AGC04 2014 Control 113 12.6 28.4 7.5 18.9 
AGC05 2014 Bum ()2 3.(J 8.4 1.9 13.7 
AGCO6 2014 Bum 89 5. 1 11.-1 2j 24.2 
MiC07 2014 Control 73 ·' 9,9 2.8 19.9 
ACiC'O!< 2014 Control 80 6.3 19.6 4.2 14 
A(j(_'()l) 2014 Control 64 33 11.2 ~ - ~ 18.7 
A(j(.'()10 2014 Control 69 4 3 17,(J u 22.1 
A(j('Ol4 2015 Control 7X () _() 2.9 0.6 55 
A(j(.'O15 2015 Control 85 2.7 !U '' 6.8 
AC iCO 16 2015 Control 85 44 15 .7 .'U< 11.8 
A<iCOI 201 5 Bum l2J >U 2.3 n 
A(j(.'()2 2015 Control l(,l) 16.7 44 .1 115 17. 1 
A( iCO4 2015 Control 169 .11 .2 705 15.1 ~) .J 

ACi('O6 2015 Bum 16'.I l,I( 20. I ,1.6 IU 
i\( j(.'()l) 2015 Control 12 7 47 13.3 ~ .. \ 7 



Table 4. Res ult s of genera l lin ear mode l w it h s ite (B urn , ,s Cont ro l) as the m a in effec t, indi v id ua l snake and year tracked as random 
e ffec ts, and du ra ti on or ac ti ve season radio -t racki ng used as a covaria te. Leas t sq ua re m eans a re re po rted , as we ll as s ignifi cance of 
yea r (20 14 o r 20 15) a nd du ra ti o n or ac ti,·e season ra di o track ing. 

!311n1 ('1 J11/J'() / Ru11clo 111 E//i:ct ( >'em) Cornriute (Durution o/ Trucking) Treutme111 (Burn vs Control) 
I / 01//l' Runge t:·s 1i111utr.: .\lc:u11 .<,F i\ leo11 SE p p p 

MCI' (ha) 2.9 2.6 lJ .3 2. 0 0.6-t 0.002 0.04 
l) '.,'1/., K I ) I ·. ( hc1 J (,. s 5.7 2-t . 7 -t . s 0.62 0.0006 0.008 
SO% KD I·. (ha) 1.2 I .S <> . I 1.3 0.56 0.000 1 0.003 
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