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ABSTRACT 

Variation in scale number and type has been well studied in Teleost fishes however, 

variation in scale shape has received less attention. Given the well-documented role of 

environment and phylogeny on multiple aspects of phenotype, we evaluated the impact of both 

on scale shape variation in darters (Percidae: Etheostomatinae). We predicted that darters with 

close phylogenetic relationships and/or shared ecologies would have more similar scale shapes, 

but this relationship would be mediated by their use of the boundary layer. We used geometric 

morphometrics and seven homologous scale landmarks from 30 individuals each for 92 species 

of darters representing all genera and terminal clades. Variables describing habitat, spawning 

mode, maximum body size (Size), and phylogeny were summarized from the literature. We used 

ordinations to examine scale shape variation among phylogenetic and ecological groups. To test 

for relationships between scale shape and ecological characteristics we conducted Partial Least 

Squares and Phylogenetic Generalized Least Squares analyses. Scale shape variation occurred 

within and among darter clades, and was significantly related to phylogeny, suggesting some 

variation is evolutionarily constrained. However, after accounting for phylogenetic signal, Size 

and water column position (WCP) were related to scale shape such that extra-large, midwater 

species had longer, narrower scales that may decrease laminar drag, and sub-benthic darters had 

scales that were narrower at the anterior insertion, had longer scale bodies and longer, wider 

ctenial margins that may facilitate burying. Among benthic darters, Size was significantly related 

to scale shape and may indicate that boundary layer use reduces selective pressures of drag. 

Consistency between our results and others from the literature provide support for environmental 

influences on scale shape in Teleost fishes.  
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CHAPTER I: INTRODUCTION 

 

Phylogeny imposes constraints on morphology (Guill et al. 2003a; Rodríguez-González 

et al. 2017; Ospina-Garcés et al. 2018), but numerous studies have also demonstrated the 

importance of ecological drivers of morphological diversity in both terrestrial and aquatic species 

(Losos et al. 1998; Zelditch et al. 2017; Watanabe et al. 2019). Fishes are the most speciose 

vertebrate group and correspondingly possess a diverse array of phenotypes (Moyle and Cech Jr. 

2004). Variation in body size, body shape, and feeding structures are often best explained by 

phylogeny (Knouft and Page 2003; Ciccotto and Mendelson 2015; Geheber and Frenette 2016), 

although the physical properties of water, such as viscosity and incompressibility, also have a 

strong influence on species traits (Imre et al. 2002; Moyle and Cech Jr. 2004; Bower and Piller 

2015).  

Environmental influences on fish morphology often leverage predictable modifications to 

fins or body shape to maximize unsteady-state (highly maneuverable) swimming in systems with 

low or unpredictable flow (ponds, lakes, oxbows, or pools of streams/tidal zones or shallow 

riffles of streams) or to maximize steady-state (highly streamlined) swimming in rapid and/or 

unidirectional flow environments (Brinsmead and Fox 2002; Langerhans 2008; Foster et al. 

2015; Wainwright 2019). However, the degree to which flow influences morphological traits can 

be constrained by evolutionary history with outcomes that vary among species, including those 

within the same aquatic systems (Krabbenhoft et al. 2009; Foster et al. 2015). Behavior may also 

influence the interactions between environment and morphology, as behavioral plasticity of 

fishes in low versus high-flow environments have been known to reverse the link between 
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steady/unsteady-state morphologies and local flow regimes (Krabbenhoft et al. 2009; Meyers and 

Belk 2014; Bower and Piller 2015). 

For benthic fishes the effects of flow on morphology may be less predictable than for 

fishes living in the water column (Langerhans 2008). Benthic fishes like South American 

riverine catfishes that occupy high-flow environments have unique morphological adaptations 

for station-holding such as suckers, enlarged pectoral fins, and pectoral spines (Casatti and 

Castro 2006; Leal et al. 2011; Pagotto et al. 2011). Wainwright (2019) found evidence of rougher 

scale surfaces in benthic damselfish compared to those living in the water column, and his results 

suggest that divergent flow types in each water column position – laminar vs. turbulent – may 

impact scale traits in these fishes. However, many benthic riverine fishes seek shelter in the 

substrate boundary layer, where they experience reduced flow across the body, and likely a 

reduction in the expected selective pressures of flow on morphological traits (Page and Swofford 

1984; Langerhans 2008; Carlson and Lauder 2011).  

In the 1800s Agassiz defined scales types (placoid, ganoid, ctenoid, and cycloid) that 

distinguish some of the major taxonomic groups of fishes, (Helfman et al. 2009) and modern 

systematists commonly use variation in scale counts, breeding scale color, and scale arrangement 

as diagnostic traits of systematic relationships, species diversification, and species identification 

(Raney and Suttkus 1964; Page 1981; Blanton and Jenkins 2008; Layman and Mayden 2012). 

Taxonomic and phylogenetic utility of scales suggests some degree of phylogenetic constrain on 

scale morphology. However, variation in other aspects of scale morphology, such as shape and 

meristic features, can be species-specific (Lippitsch 1990; Coburn and Gaglione 1992; Masood 

et al. 2015; Ibáñez 2015), which may imply that factors other than phylogeny are impacting fish 



3 
 

  
 

scales. One possibility is that scales may function to reduce drag in Teleost fishes, similar to 

placoid scales in sharks (Oeffner and Lauder 2012). Recent studies in Teleosts quantify scale 

topography and scale variation along the body (Wainwright and Lauder 2016; Wainwright et al. 

2017), and hypothesize that the ctenii may reduce turbulent flow along the body as the fish 

moves (Fletcher et al. 2014; Lauder et al. 2016; Wainwright and Lauder 2018). Differential 

levels of scale rugosity between species occupying laminar (in pelagic damselfishes) versus 

turbulent (in benthic damselfishes) flow regimes suggests that scale topography plays a role in 

drag reduction (Wainwright 2019). Muthuramalingam et al. (2019) note reduced measures of 

skin friction drag due to the overlapping arrangement of scales during steady swimming in 

European Sea Bass replicas.  

With over 250 species described, Darters (Percidae: Etheostomatinae) are an ideal clade of 

fishes in which to examine relationships between phylogeny, a benthic environment, and scale 

shape (Near et al. 2011). These typically benthic fishes are known for their flashy breeding 

colors and darting movements on the bottom of streams. They have a diversity of habitat 

requirements and morphologies (Kuehne and Barbour 1983; Page 1983; Carlson and Wainwright 

2010; Geheber and Frenette 2016). In general, body morphology and ecology have been 

described as conserved within clades of darters (Guill et al. 2003a). However, in some cases, 

sister species are highly divergent in both (Geheber and Frenette 2016). Variation in some 

aspects of darter morphology have been related to factors other than phylogeny including 

breeding behaviors, habitat, and prey acquisition strategies (Paine et al. 1982; Page and Swofford 

1984; Guill et al. 2003a; Carlson and Wainwright 2010; Martin and Page 2015). Additionally, 

convergence in morphology relating to ecological factors has been noted (Page and Swofford 
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1984; Guill et al. 2003a; Carlson and Wainwright 2010; Geheber and Frenette 2016). For 

example, Page and Swofford (1984) described six major darter ecomorphs: “Gravel-run” darters 

(the large, midwater species of Percina); “Riffle” darters (benthic residents with stocky bodies 

and vibrant sexually dimorphic breeding coloration); “Sand-run” darters (including Ammocrypta, 

Crystallaria, and Etheostoma vitreum that all frequently bury themselves in sandy runs, have 

slender, pale-colored bodies); “Quiet-pool” darters (benthic residents, but in constrast to “Riffle” 

darters, have smaller body sizes, are only somewhat stocky in body shape, and maintain cryptic 

coloration Page and Swofford 1984); and “Midwater flowing-pool” or “Benthic flowing-pool” 

darters that straddle descriptions of “Gravel-run” or “Riffle” darters, depending on their position 

in the water column (Page and Swofford 1984). Considering evidence for both phylogenetic and 

environmental influences on darter morphological phenoytpes, we evaluate the relative influence 

of these forces on darter scale shape variation. We hypothesized that scale shape variation is 

influenced jointly by phylogeny and ecological factors (Guill et al. 2003a). We predict that 

exposure to different flow regimes, body size, and spawning behavior influence scale shape 

among darters (Page and Swofford 1984; Carlson and Wainwright 2010; Bossu and Near 2015; 

Geheber and Frenette 2016). We predicted that darters with close phylogenetic relationships 

and/or similar ecologies would have more similar scale shapes than more distantly related and/or 

ecologically dissimilar species, and the relationship between scale shape and ecology should be 

stronger among darters which do not utilize the boundary layer of streams. Our results will 

provide new insights into phenotypic diversity in this speciose group of fishes and the complex 

nature of the relationship between form, evolutionary history, and environment in benthic fishes. 
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CHAPTER II: MATERIALS AND METHODS 

 

Species and ecological variable selection 

 

We first evaluated the presence of scale shape variation within and among genera and 

terminal clades of darters. To capture the potential range of scale variation, we selected at least 

one species from each genus and terminal clade within Etheostomatinae (92 total), following the 

phylogeny of Near et al. (2011). However, we labelled the previously unresolved E. maydeni as 

Allohistium maydeni, following the recommendation of MacGuigan and Near (2018).  

We assessed whether variation was explained by ecological characteristics of our selected 

species including water column position (WCP), environment type, microhabitat, spawning 

mode, substrate size, and maximum body size (Size) of darters (classifications in Appendix 1). 

WCP influences the level of exposure to predators and flow, potentially necessitating 

modification to scale shape for drag reduction. We classified species based on Bossu and Near 

(2015) as benthic (those primarily living on the substrate) or midwater (living primarily above 

the substrate), but added the category of sub-benthic for those that bury frequently in the 

substrate outside the spawning season (Kuehne and Barbour 1983; Page 1983; Page and Burr 

2011a).  

Considering variation in flow type and level experienced by fishes in different 

environments, more specialized scale shapes may be beneficial within lotic environments 

(flowing systems, probably requiring more steady-state swimming) by reducing increased drag 

experienced compared to fishes living in lentic environments (slower or non-flowing systems, 

probably requiring more unsteady-state swimming). We classified darters as either lotic 

specialists or generalists in environment type (Appendix 1). We sampled only three lentic 
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specialists (E. fusiforme, E. proeliare, E. nuchale), which we grouped with the generalists, since 

they likely experience flows more similar to generalists than to lotic specialists.  

Microhabitat, a metric that captures both flow and depth, may also influence the relative 

amount of viscous drag a darter experiences, and has been linked with variation in other 

morphological traits in darters (Kuehne and Barbour 1983; Page and Swofford 1984). We 

generalized microhabitat categories into “pool” (slower or non-flowing, deeper waters), “run” 

(moderate flow and depth), “riffle” (faster flowing, shallow waters) (Page and Burr 2011b), or 

“generalists” (species which frequent multiple microhabitat types; Appendix 1).  

Spawning mode and associated behaviors may contribute to scale shape modifications to 

reduce drag, maintain body contact during mating, affect the successful display of seasonal 

breeding colors and/or skin modifications, or to facilitate egg burying. We included four 

spawning modes recognized by Page (1983): egg “attachers”, “buriers”, “clusterers”, and 

“clumpers” (Appendix 1). We were only able to sample one species from the clumping category 

(Nothonotus microlepidus), which we placed into the clusterer group for analyses. The clumping 

behavior may be more similar to that of clusterers than buriers as far as the fish body’s 

interaction with flow and substrate are concerned (see Page and Swofford 1984), even though it 

has been hypothesized that clumping behaviors are derived from burying eggs (Page and 

Swofford 1984).  

Substrate size may determine the type of flow (laminar versus turbulent) in an area of a 

stream and the relative amount of shelter from flow available therein for darters, thus influencing 

the amount of consistent flow experienced. We used two substrate type classifications based on 

Page and Burr (2011) including  “Fine” and “Coarse” categories. These serve mainly as a proxy 



7 
 

  
 

for the relative size of the boundary layer that is potentially available to a darter and likely the 

type of flows they will encounter outside of this shelter. Fine substrates (bedrock, sand, and silt) 

are presumed to have very little boundary layer and more laminar flows, and coarse substrates 

(rock, gravel, or cobble) are presumed to have at least some amount of accessible boundary layer 

and more turbulent flows (Carlson and Lauder 2011).  

Finally, as size increases so does body surface area, and correspondingly the amount of 

hydrodynamic drag experienced (Webb 1988). Scale modifications may arise to compensate for 

increased drag, particularly in large darters that also have a reduced ability to shelter in the 

boundary layer of a stream. We considered a species “extra large” if maximum body size was 

between 96-200 mm total length (TL), “large” if maximum body size fell at or between 79 and 

95 mm TL, “medium” from 70 and 78 mm TL, and “small” from 45 and 69 mm TL (Appendix 

1). These size bins include equal cumulative percentages of species from a frequency distribution 

of maximum body sizes recorded in literature. In rare instances, classification information for 

each ecological category was not readily available for a species (due to the recent rise in the 

descriptions of darter species complexes), and in those cases we estimated values based on data 

published for its sister taxon.  

Specimen and scale selection  

 

  Using museum specimens (Appendix 1 and 2), we removed one scale from the right side 

of each individual, directly above the anal fin origin, one row below the lateral line (Figure 1). 

This was the only area for all darter species with scales present near a fin origin, eliminating 

effects of scale location on analysis of shape (Wainwright and Lauder 2016).  For most of the 92 

species, we extracted scales from 30 adult individuals (Appendix 1 and 2) to minimize potential 
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effects of ontogenetic growth on scale shape data. We ensured the use of adult specimens by 

selecting individuals that were equal to or greater than the average adult standard length for each 

species based on published size data, or selected sexually mature individuals (i.e. gravid females 

or males with breeding colors or characteristics like tubercles on fins or body, thickened skin on 

fins, head, or body, soft knobs on fins, or enlarged genital papilla Page 1983).  For each species 

we attempted to examine only individuals of a single species from the same location, river 

system, or drainage to avoid confounding factors related to intraspecific variation and possible 

occurrence of cryptic species (Hopper et al. 2015).  

Shape data 

 

After extracting each scale, we removed all soft tissue to enhance consistent placement of 

landmarks. The cleaned scale was wet mounted on a slide and imaged with a Nikon confocal 

microscope. Scales were centered on the microscope under 10x (for the largest scales, often 

species of Percina) or 20x magnification with transmitted light. We auto-scaled the images using 

NIS Elements b925 (version 4.13.04) before scanning. If scales were not in sharp focus within 

NIS Elements, we manually focused them before the image was captured. From these photos we 

generated two datasets, one with all species included (92 total) and one including only benthic 

species in WCP (i.e., excluding those categorized as midwater and sub-benthic; 72 total). Using 

similar methods to Ibáñez (2015), we placed seven geometric morphometric landmarks on each 

image using tpsDig2 version 2.26 (Rohlf 2015; Figure 1). We used a Procrustes superimposition 

to remove the effects of scale, size, and rotation (R version 3.6.2 package geomorph version 

3.2.1; Adams et al. 2017, R Core Team 2019). This method aligns the landmarks of all 

individuals, creating new Procrustes coordinates for each (Zelditch et al. 2012a). We could not 
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test for effects of sex on scale shape due to missing sex data or unequal numbers of males and 

females available. Thus, we averaged Procrustes coordinates within each species to conduct 

downstream analyses to minimize the potential effect of sex-related variation. 

Ordinations and comparative analyses 

 

To examine overall scale shape variation, and to initially guage patterns in scale shape 

related to phylogeny, we generated a covariance matrix from the averaged Procrustes coordinate 

shape data for all species to run a Principle Components Analysis (PCA) with default settings in 

the R package vegan version 2.5-6 (Oksanen et al. 2019). Component scores for each species 

were plotted in PCA morphospace to visualize variation in scale shape among and within genera 

and terminal clades of darters (Near et al. 2011). Using Mesquite version 3.51 (Maddison and 

Maddison 2018) we pruned one phylogeny to the full 92 species selected in our study and one 

which included only those from our selections which were benthic in WCP (72 species total), 

and tested for a phylogenetic signal in phylomorphospace using the K-statistic “Kmult” (R 

package geomorph; Adams et al. 2017). 

We used PCA to investigate whether scale shape varied among ecological groups as well. 

In this case, we coded species scores in morphospace plots by each variable type. Two-block, 

partial least squares (PLS) analysis (with default settings in program R package geomorph) 

allowed us to identify whether any specific combination of ecological variable types were 

associated with a particular scale shape (Rohlf and Corti 2000; Zelditch et al. 2012b). To 

determine whether scale shape covarys with ecological variables after accounting for shared 

ancestry we conducted a phylogenetic generalized least squares (PGLS; with default settings in 
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program R package geomorph) (Zelditch et al. 2012b, 2017). We carried out all analyses on the 

full 92 darter species dataset and the reduced set of the 72 benthic darter species dataset.  
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CHAPTER III: RESULTS 

 

Scale shape variation and phylogenetic signal 

 

We generated scale shape data from 92 species that represent all six darter genera, all 28 

terminal clades sensu Near et al. (2011), and all categories (ranging from 2-4) of each ecological 

variable examined. The first two axes of the PCA examining scale shape variation among all 

species selected for this study explained 82.4% of the variation (Figure 1). Scale shape change 

along these axes is summarized by transformation grids, where the anterio-posterior length of the 

scale increases and the dorso-ventral width decreases (scales become longer and thinner; Figure 

1) along PC1. Scale body length increased (see Figure 1 for scale parts), the anterior scale 

insertion narrowed, and the posterior ctenial margin was shorter and wider along PC2 (Figure 1). 

Considerable variation was observed in shape both within and among darter genera (Figure 1). 

Several taxa had particularly distinct scale shapes, including Ammocrypta beani (A01) and A. 

pellucida (A02), having scales with longer, wider ctenial margins, and very narrow anterior scale 

insertions compared to other species. Interestingly, close relatives of these two species (A. vivax 

(A03), Crystallaria asprella (C04)) and one less closely-related but burying species (E. vitreum 

(E59)), had scale shapes more similar to those found in the genera Etheostoma, Allohistium, 

Nothonotus, and Percina (Figure 1). In the main cluster of species, there was considerable 

variation primarily along PC1. Species such as N. tippecanoe (N69) and E. vitreum (E59) and E. 

microperca (E38) and E. proeliare (E46), had distinctive square-shaped scales recovered close to 

the origin of both PC axes (Figure 1). Alternatively, A. vivax (A03), E. sagitta (E50), and all 

members of clade Richiella (E13, E31, E51) scored more positively along PC2 than most 
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species. Several species of genus Percina and one species of Etheostoma (E. parvipinne (E43)) 

had distinct long, thin scales that scored positively along PC1 (Figure 1).  

Our phyloPCA also documented examples of close relatives with similar scale shapes 

(including the terminal clade Pagella from genus Percina; terminal clades Ceasia, Oopareia, 

Richiella and Microperca from genus Etheostoma; Figure 1). There was also a strong 

phylogenetic influence on scale shape variation across all darters (K = 0.6801, P = 0.001) and 

across benthic-only darters (K = 0.671, P = 0.001). However, the K-values from the K-mult test 

(K<1) indicate that phylogenetic signal is less than expected under a Brownian motion model of 

evolution.  

Alternatively, several sister species pairs such as P. palmaris (P83) and P. lenticula 

(P77), P. shumardi (P88) and P. vigil (P92), E. blennius (E11) and E. swannannoa (E56), N. 

microlepidus (N67) and N. tippecanoe (N69) had divergent scale shapes (Figure 1). In many 

cases these sister species were also divergent in one or more ecological variables. Additionally, 

some distant relatives including species of clades Adonia and Stigmacerca; species of 

Nothonotus and Neoetheostoma; Crystallaria asprella (C04) and E. swannannoa (E56); N. 

tippecanoe (N69) and E. vitreum (E59); E. baileyi (E07), E. fusiforme (E25), E. planasaxatile 

(E44), and E. radiosum (E49) had similar scale shapes and also similar ecologies (Figure 1). 

Divergence between close relatives and potential convergence between distant relatives in these 

instances suggests factors other than phylogeny contribute to scale shape variation.  

Ecology and scale shape variation-All darters 

 

Scale shape variation was observed among species from different water column positions 

(WCP; Figure 2A). Midwater and sub-benthic species showed complete separation in 
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morphospace along a combination of both PC1 and PC2 axes. Both of these groups showed some 

overlap in scale shape variation with the benthic darters (Figure 2A). Although sub-benthic 

darters occupy a similar region in morphospace (due to their unique, reduced scales), they were 

disparate in shape with variation along PC2. Benthic and midwater species also show 

considerable variation in scale shape, but along PC1 (Figure 2A).  

Considerable scale shape variation with overlap among the four size categories was 

observed (Figure 2B).  The least overlap occurred between the largest size category (extra-large 

darters between 96-200 mm TL) and all others. Members of the extra-large size class greater 

than 100 mm TL (Figure 2B) were particularly distinct, having elongated scales that loaded in 

the positive region of PC1. Almost all of those unique extra-large species were also categorized 

as midwater in WCP (Figure 2A). Species coded by spawning mode, environment type, 

substrate, or microhabitat had considerable overlap in variation along both axes.  

We found a significant relationship between scale shape and ecological characteristics of 

darters (PLS: r = 0.541, P = 0.001). There was a distinct cluster of darters with long, thin scales 

that loaded negatively along the shape axis (Figure 3A; blue circle). These species were 

associated with the negative region of the ecological variable axis, where darters were usually 

midwater in WCP, environmental generalists, microhabitat generalists or pool-dwellers, burying 

or attaching spawners, living over fine substrates, and were primarily extra-large in size (Figure 

3A). A large and diverse group of darters clustered in the positive space of both axes where 

species had scales that were shorter and wider, and lived in lotic environments, riffle or run 

microhabitats over course substrates, were sub-benthic or benthic in WCP, cluster-guarders in 

spawning mode, and small or large in maximum body size.  
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After accounting for shared ancestry using a PGLS, both size (r2 = 5.2%, P = 0.077) and 

WCP (r2 = 10.9%, P = 0.001) were significantly related to scale shape. Microhabitat and 

substrate, approached significance (P = 0.15 and 0.14 with  r2=4.5% and 1.5%, respectively), 

suggesting a possible influence on scale shape.  

Ecology and scale shape variation-Benthic darters 

 

Despite considerable overlap in scale shape variation among benthic darters in the bentic-

focused ecological PCAs, riffle specialists had scales that loaded more positively along PC2 

(Figure 4), with scales that are narrower at the anterior insertion with a widened and lengthened 

posterior ctenial margin. Nearly complete separation was observed between scale shape variation 

of riffle and run species, but these overlapped with scale shape variation of pool and generalist 

species. Size, spawning mode, and substrate groups of benthic darters showed much variability 

in scale shape and had considerable overlap in morphospace.  

For benthic species, no distinct clusters were observed in the PLS (Figure 3 B), although 

we detected a significant correlation between scale shape and ecological variables (r = 0.561, P = 

0.001). Scale shape values that loaded positively had a shorter, wider scale body, and a wider 

ctenial margin; those loading negatively along the shape axis had a narrower ctenial margin but a 

wider anterior scale insertion (Figure 3 B). Along the ecological axis, positive values were 

associated with darters that occupy lotic systems and specifically live in riffle microhabitats, are 

clustering or burying spawners, are small, large, or extra-large in size and live over coarse 

substrates. Darters loading negatively along this axis were those in pools, runs, or generalists in 

microhabitat, attach their eggs to aquatic structures, are medium in size, and live over fine 

substrates. However, despite possible trends with ecological factors found in the PLS results, 
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only body size was significantly associated with scale shape variation after accounting for 

phylogenetic signal (PGLS: P = 0.094, r2 = 6.9%). Microhabitat approaches significance and 

explains a comparable amount of shape variation as size, and thus, may also influence scale 

shape (P = 0.13, r 2= 6.6%). All other ecological variables were not significant in the PGLS.  
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CHAPTER IV: DISCUSSION 

 

In this study, we quantified shape variation in darters to evaluate the relative influences 

of ecology, size, behavior, and evolutionary history on scale traits within this largely benthic 

group of fish species. In general, we found considerable scale shape variation both among and 

within clades of darters and accordingly, a strong and significant phylogenetic signal on scale 

shape variation. However, we also found potential evidence of divergence and convergence in 

scale shape, suggesting factors other than phylogeny alone have generated darter scale 

phenotypic diversity. These results were supported by significant associations between scale 

shape and ecological variables after accounting for phylogenetic signal, especially water column 

position and body size  

Evolutionary history explains variation in darter body shapes among genera and many 

subgenera (Guill et al. 2003a), and is a strong predictor of phenotypic traits in many other 

aquatic and terrestrial taxa including Monogenean haptoral anchors (fish parasites Rodríguez-

González et al. 2017) and Scarab beetle wings (Ospina-Garcés et al. 2018). While we found 

considerable variation in scale shape at all levels examined, our data provide examples of clades 

with a common scale shape among all examined members, and as expected, we found a 

significant effect of phylogeny on scale shape variation. This suggests that scale shape, similar to 

body shape, in many darters may be phylogenetically constrained. However, some of the noted 

discernable differences between close relatives (i.e. E. swaini and E. caeruleum) and similar 

scale shapes between more distant relatives (i.e. Nothonotus and Neoetheostoma) suggest some 

variation is driven by factors other than phylogeny, such as environment.  
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The results of our ecological PCA showed relatively little overlap in scale shape between 

darters occupying different water column positions (WCP). Water column position has been 

previously linked with variation in many aspects of darter morphological traits, as each position 

comes with different types and levels of selective pressures. For example, darters that bury in 

sandy runs share many similarities like slender bodies, small fins, a narrow inter-orbital width, 

and a loss or reduction in scale number, size, and ctenial spines. Given that they spend much of 

their time hidden below the substrate, these morphological features may reflect relaxed selection 

for protection and drag reduction (Kuehne and Barbour 1983; Page and Swofford 1984; Spinner 

et al. 2016).  But, they may also be influenced by an increase in pressures related to burying 

efficiency (such as reduced skin friction) that has lead to convergence between distant relatives 

(Kuehne and Barbour 1983; Page and Swofford 1984; Spinner et al. 2016). Brighter coloration 

and a lack of fusiformity among benthic darters may result from lessened pressures of predation 

and flow, though their large pectoral fins may be important for increasing their grip on the 

bottom of a stream (Page and Swofford 1984). Midwater darters are the most exposed to flow 

and predators, and thus have smaller pectoral fins, fusiform body shapes, and cryptic coloration 

(Page and Swofford 1984). The differences in scale shape that we found between darters in 

different WCPs and the significant relationship between shape and WCP in the PGLS conform 

with patterns seen in overall morphological variation of darters and imply that selective pressures 

that have influenced the body and fins of these fishes also extends to the scales. Therefore, it is 

likely that the unique, reduced scales of sub-benthic darters aid in burying efficiency while the 

long, thin scales of the midwater darters aid in drag reduction. 
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Size was also found to be significantly associated with scale shape among darters in the 

PGLS, and the ecological PCA and PLS highlight the extra-large darters as primarily driving this 

result. Species with the most distinctive (long, thin) scale shape along PC1 were not only 

midwater, but also extra large-sized (particularly if over 100mm TL) darters. These darters 

(primarily genus Percina) are active roving predators with elongated, stream-lined bodies that 

swim in the water column, some even flip stones, to obtain macroinvertebrate prey, (Page 1983; 

Carlson and Wainwright 2010). A roving behavior contributes to most species that fit this 

description being considered generalist in habitat type (Page and Swofford 1984), because they 

regularly explore multiple habitats for food. Although these species are not specialists of the 

fastest flowing waters, because they spend considerable time moving above the substrates, out of 

the boundary layer, they experience regular unidirectional, viscous laminar flow (Krabbenhoft et 

al. 2009; Meyers and Belk 2014). Furthermore, body size is positively correlated with drag such 

that species with larger size experience increased drag forces relative to smaller species (Webb 

1988). Larger fishes may also have less ability to fully shelter in the boundary layer (Carlson and 

Lauder 2011). Adaptations that  reduce drag, or in particular, that increase steady-state 

swimming efficiency, such as a more fusiform body shape are predictable traits for such fishes 

that experience laminar flow (Langerhans 2008; Krabbenhoft et al. 2009; Meyers and Belk 

2014). The observed scale morphology of the largest, midwater darter species examined seems to 

mirror these expectations: the long, thin scale shape, just like a long, streamlined body, may also 

reflect adaptations to laminar flows experienced while roving in the water column for food 

(Figures 1 & 5). Others have found flow type influences scale morphology in fishes. Wainwright 

(2019) found that pelagic damselfishes in laminar flow conditions had scales with smoother 

surfaces than benthic damselfishes in turbulent flows, which had rougher scale topographies, 
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suggesting modifiations to scale morphology based on flow types occupied.  A few extra-large, 

midwater darter species departed from these trends such as P. macrocephala (P78) and P. 

maculata (P80), which (though they are both >100 mmTL and midwater) did not have long, thin 

scales (Figure 1). Based on size and water column position, we expected these species to have 

the long, thin scale shape of other large, midwater darters. Percina macrocephala often are found 

hovering above the substrate in pools or sheltering in brush, water willows, or large rocks (Etnier 

and Starnes 1993). Percina maculata reside mostly in pools (Etnier and Starnes 1993) and also 

hide under banks and in woody debris (Etnier and Starnes 1993). In general, the lower level of 

roving activity and increased use of shelter in these examples may contribute to a reduction in 

laminar drag forces experienced. Percina shumardi (P88), a primarily benthic and medium size 

darter, shared the long, thin scale type of the larger bodied, midwater darters (Figure 1). This 

species is usually found in large, flowing river environments with finer substrates that likely 

provide reduced boundary layer shelter from flow. Thus, this species may experience similar 

flow-related selection pressures of the large bodied, midwater darters. However, darters likely 

occupy a spectrum between the benthic and midwater zones of streams and therefore, the scale 

shape of P. shumardi may alternatively indicate that this species spends more time above the 

benthos than previously thought. Importantly, we observed extra-large, benthic species (e.g., P. 

evides, P. palmaris) and alternatively smaller, midwater species (e.g., P. stictogaster, P. 

smithvanizi) that did not have long, thin scales characteristic of fishes that are both midwater and 

large in size. This indicates that for many darters, scale shape, in part, reflects selection imposed 

through a combination of both WCP and Size.  
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Body size was the only variable significantly associated with scale shape among benthic 

darters after accounting for phylogenetic signal, but there was little variation among size 

categories in the PCA and no specific clusters of darters were observed in the PLS. The extreme 

ends of the PLS ecological axis separated medium size darters from primarily large and extra-

large darters; medium benthic darters also usually occupied pools, while the larger of the benthic 

darters usually occupied riffles. Though microhabitat was not significant in the PGLS, both the 

PLS and the PCA found the most visible differences in scale shape occurred between pool and 

riffle microhabitat groups. Riffle darters face turbulent flows in their benthic environment 

(Meyers and Belk 2014), and those riffle darters that are large may have reduced opportunities to 

fully shelter in the substrate boundary layer. Darters that occupy riffles and experience turbulent 

flow are characterized by short, wide bodies, that are thought to be the result of selective 

pressure of living in a riffle environment (Page and Swofford 1984). Again scale shape in this 

group of darters seems to mirror body shape in that larger riffle species had short, wide scales 

(Figures 3B, 4, 5) that may similarly reflect adapatation to turbulent flows. On the other end of 

the PGLS ecological axis, the medium pool darters (like E. parvipinne), which face laminar 

flows in their environment similar to the extra-large, midwater darters had scale shapes similar to 

them as well (Figures 3B, 4, 5). These observations indicate a likely important relationship 

between benthic darter scale shape, body size, and microhabitat occupied, including predominant 

flow type (turbulent vs. laminar) and that this relationship is likely mediated by the amount of 

shelter (like the substrate boundary layer) available.  

Although our analyses indicate that scale shape is influenced by phylogeny (Kmult tests: 

P=0.001), WCP (PGLS: P=0.001), and size (all species PGLS: P=0.077, benthic species PGLS: 



21 
 

  
 

P=0.094), there was considerable variation in many of our categorical groups (taxonomic or 

ecological). Some of this was likely an artifact of placing species in coarsely defined ecological 

categories, especially considering measurable body shape variation in some darters has been 

documented across highly nuanced environmental gradients and narrow geographic areas 

(Hopper et al. 2015). Additionally, shape is likely a product of interacations among 

environmental variables like those noted in this study (WCP and size). Many closely related 

species of darters, such as those in a single terminal clade, are often ecologically and 

behaviorally similar, and these traits are also known to be constrained by evolutionary history 

(Kuehne and Barbour 1983; Page 1983; Page and Swofford 1984; Guill et al. 2003a,b; Geheber 

and Frenette 2016). Thus, phylogenetic constraint on scale shape may be indirect in some cases, 

resulting from constraint on habitat requirements in general within a clade. Clarifying the relative 

influences of phylogeny (direct and/or indirect) and ecology on specific morphological traits in 

such clades that also have evolutionarily constrained ecologies may be difficult. However, the 

similarity in patterns of scale shape variation with variation in other morphological traits like 

those documented by Page and Swofford (1984), Meyers and Belk (2014), and Wainwright 

(2019) suggests fish scale morphology plays an important role in drag reduction and facilitating 

movements through different flow types, even among benthic species that utilize the boundary 

layer of streams. 
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representing one species. Transformation grids associated with PC axis 1 and PC axis 2 depict shape changes (black) from the overall 
average scale shape (gray) of all benthic darters along each respective axis. Other variables examined showed considerable variation 
and overlap among all categories in morphospace (not shown).   
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Figure 5. Darter species scale photos. Represented by each photo are: (A) A. beani, 
(B) A. pellucida, (C) A. vivax, (D) C. asprella, (E) E. vitreum, (F) E. proeliare, 
(G) E. parvipinne, (H) N. jordani, (I) E. caeruleum, (J) P. phoxocephala, (K) P. kathae, 
(L) P. lenticula, and (M) P. aurantiaca.
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Appendices 

 

Appendix 1. Species used to assess scale shape variation, ecological classifications and references for classifications. The number of individuals 

examined in parentheses. Terminal clades are from Near et al. (2011) with the addition of genus Allohistium following MacGuigan and Near 

(2018). Ecological, behavioral and size variable assignments used for each species were drawn from several sources, which are provided in the 

References section below the table. References for Environment and Microhabitat columns are the same.  

 

Species 

Code 

Species (# specimens) Water column 

position 

Environment Microhabitat Spawning mode Body size Substrate 

type 

A01 A. beani (30) Sub-benthic(26) Lotic (1; 26; 43) Run Burier(35) Small(30) Fine(30) 

A02 A. pellucida (30) Sub-benthic(26) Lotic (22; 26; 30) Run Burier(35) Medium(30) Fine(30) 

A03 A. vivax (30) Sub-benthic(26) Lotic (1; 26; 43) Run Burier(24; 46) Medium(30) Fine(30) 

C04 C. asprella (30) Sub-benthic(26) Lotic(22; 41; 43) Run Burier(35) Large(30)  Fine(30) 

E05 E. asprigene (30) Benthic(3) Generalist(22; 30; 43) Generalist Attacher(9; 35) Small(30) Coarse(30) 

E06 E. autumnale (30) Benthic(3) Lotic(30; 41) Riffle Burier(41) Large(30)  Coarse(30) 

E07 E. baileyi (30) Benthic(3) Lotic(12; 22; 30) Generalist Attacher(35; 38; 49) Small(12) Coarse(30) 

E08 E. barbouri (30) Benthic(3) Lotic(12; 22; 30) Pool Clusterer(12; 32; 35) Small(12) Coarse(30) 

E09 E. barrenense (30) Benthic(3) Lotic(12; 30) Generalist Attacher(12; 49; 56) Small(30) Coarse(30) 

E10 E. bison (30) Benthic(3) Lotic(12; 30) Generalist Burier(12) Medium(12; 30) Coarse(30) 

E11 E. blennius (29) Benthic(3) Lotic(1; 22; 30) Riffle Attacher(35) Medium(30) Coarse(30) 

E12 E. boschungi (29) Benthic(3) Lotic(1; 22; 30) Pool Attacher(1; 2; 35) Medium(30) Coarse(30) 

E13 E. brevispinum (30) Benthic(3) Lotic(30; 42) Riffle Clusterer(42) Medium(30) Coarse(30) 

E14 E. caeruleum (26) Benthic(3) Lotic(12; 22; 30) Riffle Burier(22; 56; 57) Medium(12) Coarse(30) 

E15 E. chlorosoma (29) Benthic(3) Generalist(22; 30; 43) Pool Attacher(33; 43) Small(30) Fine(30) 

E16 E. collis (30) Benthic(3) Generalist(16; 30; 42) Pool Attacher(21; 35) Small(16; 30; 42) Fine(30) 

E17 E. colorosum (30) Benthic(3) Lotic(1; 30) Pool Attacher(1; 18) Small(30) Fine(30) 

E18 E. cragini (30) Benthic(3) Lotic(22; 30; 41) Pool Burier(10; 22; 30) Small(30) Fine(30) 

E19 E. crossopterum (28) Benthic(3) Lotic(12; 30) Generalist Clusterer(27; 35) Large(12; 30)  Coarse(30) 

E20 E. derivativum (30) Benthic(3) Lotic(12; 30) Pool Clusterer(12; 27; 32) Medium(30) Coarse(30) 
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Species 

Code 

Species (# specimens) Water column 

position 

Environment Microhabitat Spawning mode Body size Substrate 

type 

E21 E. duryi (30) Benthic(3) Lotic(12) Generalist Attacher(12; 33; 39) Small(12) Coarse(30) 

E22 E. edwini (30) Benthic(3) Lotic(1; 30; 40) Run Attacher(1; 22; 40) Small(30) Fine(30) 

E23 E. etnieri (30) Benthic(3) Lotic(12) Generalist Attacher(12; 35; 38) Medium(12) Fine(30) 

E24 E. flavum (29) Benthic(3) Lotic(12) Generalist Attacher(20; 35; 39) Small(12) Coarse(30) 

E25 E. fusiforme (29) Benthic(3) Generalist(22; 30; 40) Pool Attacher(14; 22; 26) Small(30) Fine(30) 

E26 E. gracile (27) Benthic(3) Generalist(22; 30; 40) Pool Attacher(4; 35; 43) Small(30) Fine(30) 

E27 E. gutselli (30) Benthic(3) Lotic(12; 30) Riffle Attacher(35) Large(30) Coarse(30) 

E28 E. histrio (30) Benthic(3) Lotic(1; 22; 43) Riffle Attacher(35; 49) Medium(30) Fine(30) 

E29 E. jessiae (29) Benthic(3) Lotic(1; 22; 30) Generalist Burier(12; 26; 47) Small(30) Coarse(30) 

E30 E. kanawhae (30) Benthic(3) Lotic(16; 22; 30) Generalist Burier(35) Medium(30) Coarse(30) 

E31 E. kennicotti (30) Benthic(3) Lotic(12; 22; 30) Pool Clusterer(28; 31; 35) Medium(12) Coarse(30) 

E32 E. lachneri (30) Benthic(3) Lotic(1; 30) Pool Attacher(35) Small(30) Fine(30) 

E33 E. lawrencei (30) Benthic(3) Lotic(12; 30) Generalist Burier(12) Medium(12; 30) Coarse(30) 

E34 E. lepidum (29) Benthic(3) Lotic(12; 22; 30) Riffle Attacher(12; 30; 50) Small(12) Coarse(30) 

E35 E. luteovinctum (30) Benthic(3) Generalist(12; 30) Generalist Burier(19) Medium(12; 30) Coarse(30) 

E36 E. lynceum (30) Benthic(3) Lotic(12; 30) Riffle Attacher(35) Small(30) Coarse(30) 

E37 A. maydeni (22) Benthic(3) Lotic(12; 30; 51) Pool Attacher(16; 35) Large(30)  Coarse(30) 

E38 E. microperca (30) Benthic(3) Lotic(22; 30; 37) Pool Attacher(37; 56; 57) Small(30) Fine(30) 

E39 E. nigrum (30) Benthic(3) Generalist(12) Run Clusterer(26; 56; 57) Medium(30) Fine(30) 

E40 E. nuchale (23) Benthic(3) Generalist(1; 22; 30) Pool Attacher(11) Small(30) Fine(30) 

E41 E. okaloosae (30) Benthic(3) Lotic(22; 30; 40) Run Attacher(8; 22; 35) Small(30) Fine(30) 

E42 E. oophylax (29) Benthic(3) Lotic(12; 30) Pool Clusterer(12; 27; 35) Large(30) Fine(30) 

E43 E. parvipinne (30) Benthic(3) Lotic(1; 30; 43) Pool Attacher(1; 17; 43) Small(30) Fine(30) 

E44 E. planasaxatile (29) Benthic(3) Lotic(12; 30) Generalist Attacher(12) Small(30) Coarse(30) 

E45 E. podostemone (30) Benthic(3) Lotic(16; 22; 30) Generalist Clusterer(15; 16; 35) Medium(30) Coarse(30) 

E46 E. proeliare (29) Benthic(3) Generalist(22; 26; 30) Pool Attacher(5; 22; 43) Small(30) Fine(30) 

E47 E. pseudovulatum (32) Benthic(3) Lotic(12; 30) Pool Clusterer(12) Medium(30) Fine(30) 

E48 E. pyrrhogaster (30) Benthic(3) Lotic(12; 30) Generalist Attacher(7; 12; 35) Small(12; 30) Fine(30) 
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Species 

Code 

Species (# specimens) Water column 

position 

Environment Microhabitat Spawning mode Body size Substrate 

type 

E49 E. radiosum (30) Benthic(3) Generalist(22; 30; 41) Generalist Burier(22; 41; 45) Medium(30) Coarse(30) 

E50 E. sagitta (30) Benthic(3) Lotic(12; 22; 30) Generalist Burier(7; 12; 35) Large(30) Coarse(30) 

E51 E. sitikuense (30) Benthic(3) Lotic(12; 30) Generalist Clusterer(12) Small(30) Coarse(30) 

E52 E. smithi (30) Benthic(3) Generalist(12; 22; 30) Pool Clusterer(12; 31; 35) Small(12) Coarse(30) 

E53 E. spectabile (30) Benthic(3) Lotic(37; 41) Generalist Burier(21; 23; 41) Medium(30) Coarse(30) 

E54 E. stigmaeum (30) Benthic(3) Lotic(1; 22; 30) Generalist Burier(1; 26; 47) Small(30) Fine(30) 

E55 E. swaini (30) Benthic(3) Lotic(22; 26; 43) Pool Burier(26; 43; 44) Small(43) Coarse(30) 

E56 E. swannanoa (30) Benthic(3) Lotic(12; 22; 30) Generalist Attacher(35; 46) Large(12)  Coarse(30) 

E57 E. tetrazonum (30) Benthic(3) Lotic(30; 37) Riffle Burier(26; 37; 35) Medium(30) Coarse(30) 

E58 E. variatum (30) Benthic(3) Lotic(16; 30; 52) Riffle Burier(22; 35; 46) Large(30)  Coarse(30) 

E59 E. vitreum (30) Sub-benthic(26) Lotic(16; 30; 58) Generalist Clusterer(35; 58) Small(30) Fine(30) 

E60 E. whipplei (30) Benthic(3) Lotic(22; 30; 41) Generalist Burier(35) Large(30)  Coarse(30) 

E61 E. zonale (30) Benthic(3) Lotic(12; 30) Riffle Attacher(12; 37; 53) Large(12)  Coarse(30) 

E62 E. zonistium (30) Benthic(3) Lotic(12; 26) Generalist Attacher(7; 12; 35) Medium(12) Fine(30) 

N63 N. acuticeps (30) Benthic(3) Lotic(12; 22; 30) Riffle Burier(12; 35) Medium(30) Coarse(30) 

N64 N. bellus (27) Benthic(3) Lotic(12; 22; 30) Riffle Burier(13; 35) Medium(12; 30) Coarse(30) 

N65 N. camurus (28) Benthic(3) Lotic(12; 22; 26) Riffle Burier(12; 22; 35) Large(12)  Coarse(30) 

N66 N. jordani (30) Benthic(3) Lotic(12; 22; 30) Riffle Burier(12; 25; 35) Medium(30) Coarse(30) 

N67 N. microlepidus (27) Benthic(3) Lotic(12; 22; 26) Riffle Clusterer(12; 33; 35) Large(12)  Coarse(30) 

N68 N. rufilineatus (28) Benthic(3) Lotic(12; 22; 30) Riffle Burier(12; 35; 55) Large(12)  Coarse(30) 

N69 N. tippecanoe (30) Benthic(3) Lotic(12; 22; 30) Riffle Burier(12; 35; 54) Small(12) Coarse(30) 

P70 P. aurantiaca (30) Hyperbenthic(3) Lotic(12; 22; 30) Generalist Burier(12; 22; 35) Extra large(30) Coarse(30) 

P71 P. caprodes (30) Hyperbenthic(3) Generalist(22; 26; 41) Generalist Burier(35; 41) Extra large(30) Fine(30) 

P72 P. copelandi (29) Benthic(3) Generalist(22; 30; 41) Generalist Burier(22; 35; 41) Small(30) Fine(30) 

P73 P. crassa (29) Benthic(3) Lotic(22; 26;30) Generalist Burier(35) Large(30)  Coarse(30) 

P74 P. evides (26) Benthic(3) Lotic(12; 30; 43) Riffle Burier(35; 43) Large(30)  Coarse(30) 

P75 P. gymnocephala (31) Hyperbenthic(3) Lotic(16; 30) Riffle Burier(35) Large(30)  Coarse(30) 

P76 P. kathae (30) Hyperbenthic(3) Lotic(12; 30) Generalist Burier(35) Extra large(30) Coarse(30) 
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Code 

Species (# specimens) Water column 

position 

Environment Microhabitat Spawning mode Body size Substrate 

type 

P77 P. lenticula (30) Hyperbenthic(3) Lotic(1; 30; 43) Riffle Burier(35) Extra large(30) Coarse(30) 

P78 P. macrocephala (13) Hyperbenthic(3) Lotic(12; 22; 30) Pool Burier(35) Extra large(30) Coarse(30) 

P79 P. macrolepida (30) Hyperbenthic(3) Generalist(22; 26; 30) Generalist Burier(35) Extra large(30) Fine(30) 

P80 P. maculata (30) Hyperbenthic(3) Lotic(30; 48) Pool Burier(35; 36) Extra large(30) Fine(30) 

P81 P. nevisense (30) Benthic(3) Lotic(22; 26; 30) Generalist Burier(16; 22) Large(30)  Fine(30) 

P82 P. nigrofasciata (30) Hyperbenthic(3) Lotic(22; 30; 43) Pool Burier(35) Extra large(30) Fine(30) 

P83 P. palmaris (30) Benthic(3) Lotic(1; 12; 26) Riffle Burier(35) Large(12)  Coarse(30) 

P84 P. phoxocephala (30) Hyperbenthic(3) Lotic(22; 30; 48) Riffle Burier(34; 35) Large(30)  Coarse(30) 

P85 P. rex (19) Hyperbenthic(3) Lotic(16; 22; 30) Generalist Burier(16) Extra large(30) Coarse(30) 

P86 P. roanoka (30) Benthic(3) Lotic(16; 22; 30) Riffle Burier(16; 35) Medium(30) Coarse(30) 

P87 P. sciera (30) Hyperbenthic(3) Lotic(22; 26; 30) Generalist Burier(35) Extra large(30) Coarse(30) 

P88 P. shumardi (30) Benthic(3) Lotic(22; 30; 43) Riffle Burier(35) Medium(30) Coarse(30) 

P89 P. smithvanizi (28) Hyperbenthic(3) Lotic(1; 30) Generalist Burier(35) Medium(30) Coarse(30) 

P90 P. squamata (30) Hyperbenthic(3) Lotic(12; 22; 30) Generalist Burier(35) Extra large(30) Coarse(30) 

P91 P. stictogaster (30) Hyperbenthic(3) Lotic(12; 22; 30) Pool Burier(6, 35) Medium(30) Fine(30) 

P92 P. vigil (30) Benthic(3) Lotic(30; 43) Generalist Burier(35) Medium(30) Fine(30) 
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Appendix 2. Materials examined. Institutional abbreviations followed those listed at 

https://asih.org/standard-symbolic-codes. Materials are grouped by genera and listed alphabetically by 

species, state, drainage, and institution with collection lot numbers in numerical order. Numbers in 

parentheses are number of specimens with scales extracted and imaged from collection lot.  

Allohistium maydeni: Tennessee: Ohio River Drainage: UT 91.2174 (3), 91.4859 (1), 91.4881 (3), 

91.4886 (7), 91.4972 (1), 91.4995 (2), 91.5003 (1), 91.5019 (1), 91.7531 (2), 91.8462 (1).   

Ammocrypta beanii: Louisiana: Lake Pontchartrain Drainage: TU 202757 (12); Pearl River 

Drainage: TU 195856 (18). A. pellucida: Kentucky: Ohio River Drainage: MOSU 552 (4), 603 (12), 1001 

(1), 2351 (3), 2761 (10). A. vivax: Texas: Neches River Drainage: 72753 (30).  

Crystallaria asprella: Louisiana: Pearl River Drainage: TU 68924 (15); Mississippi: Pearl River 

Drainage: TU 28530 (15).  

 Etheostoma asprigene: Texas: Neches River Drainage: TU 112163 (11), 116149 (19). E. 

autumnale: Missouri: White River Drainage: TU 191354 (30). E. baileyi: Kentucky: Cumberland River 

Drainage: UT 91.7240 (20), 91.5076 (10). E. barbouri: Kentucky: Ohio River Drainage: MOSU 1300 (3), 

2608 (2), UT 91.1805 (25). E. barrenense: Tennessee: Green-Ohio River Drainage: APSU 00678 (14), 

002374 (2), 02376 (14). E. bison: Tennessee: Ohio River Drainage: APSU 00629 (1), 01730 (3), 01734 

(1), 01766 (8), 01780 (2), 01811 (2), 01849 (1), 01851 (1), 01874 (3), 01977 (1), 02029 (2), 59598 (5). E. 

blennius: Tennessee: Tennessee-Ohio River Drainage: APSU 00647 (1), 00698 (4), 00729 (3), 00807 (1), 

00977 (1), 01266 (1), 01942 (1), 01961 (1), UT 91.6118 (17). E. boschungi: Alabama: Ohio River 

Drainage: TU 79718 (21); Tennessee: Ohio River Drainage: INHS 36293 (1), 79437 (6); UT 91.4292 (2). 

E. brevispinum: North Carolina: Yadkin River Drainage: NCSM 33827 (18), 64683 (12). E. caeruleum: 

Tennessee: Cumberland-Ohio River Drainage: APSU 00722 (2), 00800 (2); Duck-Tennessee-Ohio River 

Drainage: APSU 00630 (3), 00972 (15), 01175 (2), 02011 (1), 02032 (1). E. chlorosoma: Louisiana: Pearl 

River Drainage: TU 43831 (30). E. collis: North Carolina: Deep River Drainage: NCSM 18191 (20), 

53166 (2); Haw River Drainage: NCSM 48521 (8). E. colorosum: Florida: Blackwater River Drainage: 

154458 (30). E. cragini: Missouri: Spring-Neosho-Arkansas River Drainage: INHS 75481 (7); Arkansas 

River Drainage: TU 191344 (13), 191351 (10). E. crossopterum: Kentucky: Ohio River Drainage: APSU 

00064 (11), 00090 (10), 00102 (9). E. derivativum: Tennessee: Cumberland River Drainage: TU 191447 

(30). E. duryi: Tennessee: Tennessee-Ohio River Drainage: NCSM 83925 (30). E. edwini: Alabama: 

Yellow River Drainage: TU 73179 (24); Florida: Blackwater River Drainage: TU 124296 (6). E. etnieri: 

Tennessee: Cumberland-Ohio River Drainage: APSU 00572 (5), UT 91.6593 (25). E. flavum: Tennessee: 

Cumberland-Ohio River Drainage: APSU 00719 (24); Tennessee-Ohio River Drainage: APSU 01976 (2), 

01932 (1), 01989 (1), 02010 (2). E. fusiforme: Florida: Choctawatchee: TU 105558 (30). E. gracile: 

Kentucky: Black Slough-Mayfield Creek-Mississippi River Drainage: MOSU 2126 (18); Cumberland-

Ohio River Drainage: MOSU 2626 (4); Obion River Drainage: MOSU 2162 (2), 2205 (6); Mississippi: 

Big Black River Drainage: TU 133700 (27). E. gutselli: North Carolina: Little Tennessee-Tennessee 

River Drainage: TU 26217 (6), 29502 (1); 91.3577 (23). E. histrio: Mississippi: Bayou Pierre Drainage: 

TU 55690 (30). E. jessiae: Georgia: Tennessee River Drainage: UT 91.4507 (6); Tennessee: Nolichucky-

French Broad-Tennessee-Ohio River Drainage: UT 91.3309 (13), 91.4190 (10). E. kanawhae: Virginia: 

New River Drainage: TU 70479 (17), 70058 (8), 19575 (5). E. kennicotti: Tennessee: Tennessee-Ohio 

River Drainage: TU 88688 (15). E. lachneri: Alabama: Sipsey River Drainage: UT 91.2194 (11); 

Tombigbee River Drainage: UT 91.3562 (19). E. lawrencei: Kentucky: Green-Ohio River Drainage: UT 

91.7336 (30). E. lepidum: Texas: Colorado River Drainage: TU 97425 (30). E. luteovinctum: Tennessee: 
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Duck-Tennessee-Ohio River Drainage: APSU 04356 (30). E. lynceum: Tennessee: Obion River Drainage: 

APSU 01473 (24), 01457 (6). E. microperca: Missouri: Gasconade River Drainage: INHS 75828 (30). E. 

nigrum: Tennessee: Obion River Drainage: APSU 00449 (8), 01116 (14), 01574 (8). E. nuchale: 

Alabama: Alabama River Drainage: TU 56514 (24). E. okaloosae: Florida: Choctawhatchae Bay 

Drainage: TU 31859 (14), 56795 (6), 102742 (10). E. oophylax: Tennessee: Cumberland-Ohio River 

Drainage: APSU 02652 (2); Tennessee-Ohio River Drainage: APSU 01224 (1), 01754 (14), 01778 (2), 

02646 (1), 02647 (2), 02648 (2), 02649 (1), 02654 (2), 02657 (3). E. parvipinne: Alabama: Alabama 

River Drainage: TU 35057 (6); Choctawhatchee-Alabama River Drainage: TU 183319 (16); Mississippi: 

Homochitto-Mississippi River Drainage: TU 67983 (8). E. planasaxatile: Tennessee: Duck-Tennessee-

Ohio River Drainage: APSU 00641 (19), 01178 (1), 01713 (1), 01838 (3), 01928 (2), 01965 (4). E. 

podostemone: Virginia: Roanoke River Drainage: TU 69183 (4), 71030 (10), 72318 (3), 73198 (5), UT 

91.3026 (8). E. proeliare: Mississippi: Big Black River Drainage: TU 139403 (30). E. pseudovulatum: 

Tennessee: Duck-Tennessee-Ohio River Drainage: APSU 04661 (6); Tennessee-Ohio River Drainage: 

APSU 01707 (1), 01719 (1), 01727 (2), 01731 (1), 01808 (1), 01822 (1), 01835 (1), 01847 (1), 01850 (1), 

01870 (1), 01886 (1), 01894 (1), 01912 (1), 01922 (1), 01931 (1), 01944 (1), 01959 (1), 01973 (1), 01974 

(1), 02002 (1), 02006 (1), 02026 (1), 02030 (1), 02047 (1), 02665 (1). E. pyrrhogaster: Tennessee: Obion 

River Drainage: APSU 02668 (18), 02679 (4), UT 91.2757 (8). E. radiosum: Arkansas: Saline-Little 

River Drainage: TU 97689 (30). E. sagitta: Kentucky: Cumberland-Ohio River Drainage: MOSU 872 (1), 

888 (1), 1954 (1), 2021 (3), 2148 (2), 2082 (1), 2729 (1); Tennessee: Cumberland-Ohio River Drainage: 

UT 91.3522 (8), 91.3549 (9), 91.4015 (2), 91.4941 (1). E. sitikuense: Tennessee: Tennessee-Ohio River 

Drainage: UT 91.6373 (30). E. smithi: Kentucky: Cumberland-Ohio River Drainage: INHS 61173 (12), 

61182 (6), 75017 (10), 84190 (2). E. spectabile: Missouri: Arkansas River Drainage: TU 191355 (21); 

Oklahoma: Arkansas River Drainage: TU 188642 (9). E. stigmaeum: Alabama: Coosa-Alabama River 

Drainage: TU 68212 (30). E. swaini: Mississippi: Pearl River Drainage: TU 128766 (30). E. swannanoa: 

North Carolina: French Broad-Tennessee-Ohio River Drainage: TU 29639 (12); Tennessee: French 

Broad-Tennessee-Ohio River Drainage: UT 91.4530 (18). E. tetrazonum: Missouri: Missouri-Mississippi 

River Drainage: TU 38033 (16), 118111 (8), 188902 (6). E. variatum: Ohio: Scioto-Ohio River Drainage: 

UT 91.5466 (9); West Virginia: Elk-Kanawha-Ohio River Drainage: UT 91.3011 (15), 91.5415 (6). E. 

vitreum: Virginia: Roanoke River Drainage: TU 72681 (30). E. whipplei: Mississippi: Mississippi River 

Drainage: TU 3614 (30). E. zonale: Tennessee: Hiawassee-Tennessee-Ohio River Drainage: UT 91.4050 

(30). E. zonistium: Tennessee: Big Sandy-Tennessee-Ohio River Drainage: APSU 01226 (9), 01229 (21).  

Nothonotus acuticeps: North Carolina: Nolichucky-French Broad-Tennessee-Ohio River 

Drainage: 91.4018 (11); Tennessee: Nolichucky-French Broad-Tennessee-Ohio River Drainage: UT 

91.1875 (5), 91.1876 (3), 91.4036 (11). N. bellus: Kentucky: Barren-Green-Ohio River Drainage: APSU 

01307 (4), UT 91.1811 (6); Tennessee: Barren-Green-Ohio River Drainage: APSU 00676 (2), 00766 (1), 

02387 (2), UT 91.3772 (15). N. camurus: Tennessee: Big South Fork Cumberland-Cumberland-Ohio 

River Drainage: UT 91.5435 (10); Clinch-Tennessee-Ohio River Drainage: UT 91.5829 (9); Nolichucky-

French Broad-Tennessee-Ohio River Drainage: UT 91.8213-6548 (11). N. jordani: Alabama: Alabama 

River Drainage: TU 106777 (15); Georgia: Alabama River Drainage: UT 91.5161 (8), 91.5875 (7). N. 

microlepidus: Kentucky: Little-Cumberland-Ohio River Drainage: APSU 00391 (5); Tennessee: East 

Fork Stones-Cumberland-Ohio River Drainage: UT 91.3030 (6); Harpeth-Cumberland-Ohio River 

Drainage: UT 91.711 (6); Red-Cumberland-Ohio River Drainage: UT 91.3739 (13). N. rufilineatus: 

Tennessee: Cumberland-Ohio River Drainage: APSU 00797 (5), 01205 (8), 01261 (12); Buffalo-

Tennessee-Ohio River Drainage: APSU 00694 (3); Piney-Duck-Tennessee-Ohio River Drainage: APSU 
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02008 (2). N. tippecanoe: Kentucky: Cumberland-Ohio River Drainage: UT 91.7305 (20); Tennessee: 

Cumberland-Ohio River Drainage: UT 91.4296 (10).  

Percina aurantiaca: Tennessee: Clinch-Tennessee River Drainage: UT 91.4130 (24), 91.3652 (6). 

P. caprodes: Arkansas: White River Drainage: TU 50422 (10), 50428 (20). P. copelandi: Arkansas: 

Fourch la Fave Drainage: TU 97099 (4); Little River Drainage: TU 93159 (6); Ouachita River Drainage: 

TU 188842 (2), 202555 (4); Red River Drainage: TU 103417 (1), 103418 (3); Oklahoma: Kiamichi-Red 

River Drainage: UT 91.1896 (4); Little River Drainage: TU 147542 (6). P. crassa: North Carolina: Cape 

Fear River Drainage: 75482 (30). P. evides: Georgia: Hiawassee-Tennessee-Ohio River Drainage: UT 

91.5184 (9); Tennessee: Tennessee-Ohio River Drainage: APSU 03420 (1), 04525 (2), 04529 (1), 04531 

(12); Duck-Tennessee-Ohio River Drainage: APSU 01067 (1), 01841 (1); Nolichucky-French Broad-

Tennessee-Ohio River Drainage: APSU 04526 (1), 04528 (2). P. gymnocephala: North Carolina: New-

Kanawha-Ohio River Drainage: NCSM 2928 (8); South Fork New-New-Kanawha-Ohio River Drainage: 

NCSM 36669 (6), 36670 (9), 53397 (9). P. kathae: Alabama: Alabama River Drainage: TU 167172 (1), 

60463 (1); Cahaba-Alabama River Drainage: TU 188854 (1), 202291 (2); Coosa-Alabama River 

Drainage: TU 152202 (2); Black Warrior River Drainage: TU 167905 (7); Tombigbee-Mobile Bay 

Drainage: TU 60060 (4), 77069 (4), 127789 (2), 184019 (4); Georgia; Conasauga-Alabama River 

Drainage: TU 121094 (1); Mobile Bay Drainage: TU 30463 (1). P. lenticula: Mississippi: Pascagoula 

River Drainage: TU 30074 (10), 53715 (8), 58772 (1), 58807 (4), 59560 (2), 60556 (2), 66080 (1); Pearl 

River Drainage: TU 189925 (2). P. macrocephala: Kentucky: Ohio River Drainage: MOSU 2369 (1), 

2373 (1), 2385 (1); Green-Ohio River Drainage: APSU 05045 (3), INHS 76989 (1), 76990 (1), 76991 (1), 

76992 (1), 76995 (2), 77000 (1), MOSU 2291 (3); Pennsylvania: Allegheny-Ohio River Drainage: MOSU 

920 (1); Tennessee: Tennessee-Ohio River Drainage: UT 91.737 (1), 91.1544 (3). P. macrolepida: 

Louisiana: Calcasieu River Drainage: TU 120560 (1); Texas: Neches River Drainage: TU 111060 (7), 

111805 (12), 116113 (6), 116151 (4). P. maculata: Illinois: Mill Creek-Wabash-Ohio River Drainage: UT 

91.1709 (21), 91.5751 (4); Kentucky: Kinniconick Creek-Ohio River Drainage: UT 91.2596 (4). P. 

nevisense: North Carolina: Contentnea Creek-Neuse River Drainage: NCSM 519 (20), 24549 (4), 52881 

(6). P. nigrofasciata: Alabama: Alabama River Drainage: TU 40780 (2); Louisiana: Pearl River Drainage: 

TU 203645 (28). P. palmaris: Alabama: Tallapoosa-Mobile River Drainage: UT 91.3449 (13), 91.8285 

(5); Georgia: Etowah-Coosa-Mobile River Drainage: UT 91.4371 (7); Tallapoosa-Mobile River Drainage: 

UT 91.2497 (5). P. phoxocephala: Indiana: Wabash-Ohio River Drainage: UT 91.1952 (29); Ohio: Ohio 

River Drainage: UT 91.2971 (1). P. rex: Virginia: Roanoke River Drainage: INHS 27297 (1), 83454 (2), 

83526 (1), 83900 (3), TU 71033 (12). P. roanoka: Virginia: Roanoke River Drainage: TU 71032 (30). P. 

sciera: Tennessee: Hatchie River Drainage: APSU 03406 (2), 03446 (3), 03448 (1); Mississippi River 

Drainage: APSU 03441 (1); North Fork Obion-Obion River Drainage: APSU 03442 (15); Obion River 

Drainage: APSU 01660 (1), 01671 (1); Wolf River Drainage: APSU 03444 (4), 03447 (2). P. shumardi: 

Louisiana: Pearl River Drainage: TU 100922 (2), 111574 (13), 124459 (15). P. smithvanizi: Alabama: 

Tallapoosa-Alabama River Drainage: UAIC 8515.12 (17), UT 91.8286 (6); Georgia: Tallapoosa-Alabama 

River Drainage: UT 91.7813. P. squamata: North Carolina: French Broad-Tennessee-Ohio River 

Drainage: NCSM 7312 (4), 7328 (3), 25045 (2), 52375 (1), 52468 (1), 55302 (1), 70560 (2); Hiawassee-

Tennessee-Ohio River Drainage: NCSM 3947 (2); Tennessee: Emory-Tennessee River Drainage: UT 

91.556 (1); Obed River Drainage: UT 91.559 (13). P. stictogaster: Kentucky: Red-Kentucky River 

Drainage: MOSU 10 (3), 241 (4), 1827 (3); Kentucky River Drainage: MOSU 908 (4), 2497 (2), 2599 

(10), 2601 (4). P. vigil: Mississippi: Pascagoula River Drainage: TU 182025 (30).  

 




