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ABSTRACT 

BROOKE A. GRUBB. Phylogeography and population genetics of a headwater-stream 

adapted crayfish, Cambarus pristinus (Decapoda: Cambaridae), from the Cumberland 

Plateau in Tennessee. (Under the direction of DR. REBECCA BLANTON JOHANSEN) 

Habitat loss and fragmentation represent significant threats to North American 

crayfish diversity. Assessments of genetic diversity within and among populations of 

imperiled species can provide a baseline for determining the relative impacts of 

contemporary anthropogenic threats such as habitat fragmentation to population 

connectivity, as well as aid in identifying historical factors that contribute to population 

structure. Cambarus pristinus, a species of conservation concern and a headwater-stream 

adapted crayfish endemic to the Cumberland Plateau in Tennessee, exhibits a disjunct 

distribution within 4th order or lower tributaries of the Caney Fork and Big Brush Creek 

systems and is comprised of two morphologically distinct forms, the nominal Caney Fork 

form (Caney Fork system) and the Sequatchie form (Caney Fork and Big Brush Creek 

systems). Habitat degradation from activities such as silviculture and strip mining have 

been observed throughout the Cumberland Plateau and Cambarus pristinus has 

experienced recent local extirpations. Our objectives were to examine variation in 

mitochondrial DNA (COI) and nuclear alleles (microsatellites) to provide estimates of 

phylogeographic relationships and contemporary levels of genetic structure, respectively, 

within C. pristinus. We predicted that changes in stream hydrology, physiographic 

regions, and drainage divides would contribute to long-standing isolation among 

populations separated by these features. We also expected recent anthropogenic 

disturbances and population loss to have further impacted population connectivity and 
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lead to reduced genetic diversity and increased population isolation relative to historic 

levels. Assessment of variation in mitochondrial haplotypes and phylogeographic 

relationships found low haplotype divergences and broadly shared haplotypes within each 

morphological form, implying that gene flow was maintained among populations within a 

form at some level historically, and that geographic features and natural instream barriers 

did not prevent dispersal.  Each form had a unique set of haplotypes and was recovered as 

a separate, divergent clade indicating the two forms represent distinct genetic lineages 

and supporting recognition of the Sequatchie form as a distinct taxon. For the Caney Fork 

form of C. pristinus our microsatellite data recovered a high degree of population 

isolation and support for the occurrence of six isolated populations. We also recovered 

several low genetic diversity metrics within each cluster and for the Caney Fork form 

overall. This suggests that the Caney Fork form of C. pristinus has a reduced adaptive 

potential and that historic connectivity has been lost under anthropogenic disturbance. 

We suggest that Cambarus pristinus warrants continued state protection and that future 

population genetic monitoring be implemented. 
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Introduction 

 Crayfishes are a diverse group of benthic, freshwater crustaceans with over 600 

recognized species and new species described annually (Crandall and Buhay 2008).  

Approximately two-thirds of this diversity is found in the southeastern United States in 

the family Cambaridae and many species in this family exhibit high degrees of endemism 

(Lodge et al. 2000; Taylor et al. 2007; Dyer et al. 2013; Crandall and De Grave 2017; 

Dyer and Brewer 2018; Loughman and Williams 2018). Crayfishes, like many 

invertebrates, are a vital part of aquatic community structure. They act as ecosystem 

engineers by burrowing into substrates and creating microhabitats for other invertebrates 

(Creed and Reed 2004; Pintor and Soluk 2006; Glon and Thoma 2017), alter trophic 

interactions directly and indirectly via feeding links at multiple trophic levels (Creed 

1994; Lodge et al. 1994; Dorn and Wojdak 2004), and are a vital part of many fish diets 

(Whitledge and Rabeni 1997). Despite their known biological importance and 

biodiversity there is a paucity of information on the distribution, life history, and genetic 

diversity of many species (Taylor and Schuster 2004; Moore et al. 2013; Figiel 2016), 

which impairs development of effective conservation management strategies for the 

estimated 48% of North American crayfishes considered imperiled (Taylor et al. 2007). 

Overexploitation, habitat fragmentation, pollution, and invasive species are the 

main drivers of crayfish imperilment (Taylor et al. 2007). Several activities that 

contribute to habitat fragmentation and alteration in North America crayfishes include 

urban development, dams/water management, and logging/silviculture practices 

(Richman et al. 2015). Many crayfishes also have small geographic ranges and small 
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populations, which makes them more vulnerable to such human-mediated threats (Gaston 

1994; Angermeier 1995).  

 In general, population connectivity via gene flow is disrupted by human-mediated 

fragmentation but is also influenced by several other factors, including dispersal ability of 

an organism, natural physical barriers in the environment and, geographic distance 

between populations (Koizumi et al. 2012; Phillipsen et al. 2015; Davis et al. 2018; 

Serrao et al. 2018; Tonkin et al. 2018). Compared to other aquatic groups such as fishes, 

few studies have examined population structure or the overall genetic diversity in 

crayfish species to explicitly test how such factors may impact population connectivity; 

the majority of those that have were conducted in Europe and Australia/Oceania (Figiel 

2016).  Studies that have focused on North American crayfishes have been limited to 

understanding genetic diversity and population connectivity of invasive populations, 

phylogeography of widely distributed species, or testing phylogenetic relationships 

within Cambaridae (Barbaresi et al. 2003; Fetzner and Crandall 2003; Finlay et al. 2006; 

Yue et al. 2010a). Given the high diversity and level of imperilment of North American 

crayfishes (Taylor et al. 2007), studies that examine how specific factors may influence 

population connectivity, especially for species that have small native ranges, are needed. 

Such studies can inform management of imperiled species by providing a basis for 

estimating the migration or dispersal potential of species, identifying historical processes 

that have shaped species distributions, predicting how species may respond to 

disturbance, and testing hypotheses about the relationships between species traits and the 

degree of population connectivity observed (Lowe and Allendorf 2010; Koizumi et al. 

2012; Wang 2014; Wang and Bradburd 2014; Lowe et al. 2017). For example, it is often 
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hypothesized that species with low dispersal ability would exhibit high levels of 

population structure or reduced gene flow, as in the Murray Crayfish, Euastacus armatus 

of Australia (Whiterod et al. 2016). However, Finlay, et al. (2006) found a high degree of 

connectivity between surface and cave populations of the Cavespring Crayfish, 

Cambarus tenebrosus, despite a presumed limited dispersal ability in the species. 

 In riverine environments, dispersal is further limited due to the linear or dendritic 

pattern of these environments that restrict movement opportunities to narrow aquatic 

habitat corridors (Fagan 2002; Tonkin et al. 2018). Due to this, habitat degradation or 

artificial fragmentation is more likely to inhibit gene flow, resulting in population 

isolation, genetic drift, and reduced population persistence (Ward et al. 1994; Alp et al. 

2012; Pilger et al. 2015, 2017). Given the largely linear nature of riverine systems, it is 

also expected that populations of species will typically display a pattern of increasing 

genetic isolation with increasing geographic distance among populations know as 

isolation-by-distance (IBD; Fetzner et al. 2003; Sexton et al. 2013).  

 Crayfishes, however, may be less constrained by their aquatic environments than 

other taxa and thus, may not show expected patterns of population isolation. For example, 

some species engage in limited overland dispersal (Furse et al. 2004; Oliveira et al. 2015; 

Lipták et al. 2016; Herrmann et al. 2018; Thomas et al. 2018) and dispersal ability is 

highly variable among crayfishes. Some species exhibit high degrees of dispersal moving 

across several aquatic systems (Barbaresi et al. 2004; Li et al. 2012; Loughman et al. 

2013) and others show limited dispersal with individuals moving ≤ 1 km (Robinson et al. 

2000; Bubb et al. 2006; Hurry et al. 2015; Whiterod et al. 2016). Dispersal potential may 

also be tied to fecundity and body size. For instance, in darters, species with higher 
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fecundity exhibit a higher dispersal potential (Turner et al. 1996). Fecundity is closely 

tied to body size in crayfishes as the number of eggs fertilized is determined by the 

amount of available surface area on the underside of the mother’s abdomen where the 

eggs are attached (Distefano et al. 2013).  Several barriers limiting crayfish dispersal 

have been identified including; waterfalls, dams, high gradient streams, and rapid 

changes in stream flow (Light 2003; Kerby et al. 2005; Bubb et al. 2006; Foster and 

Keller 2011) but the effects of these barriers on population connectivity vary by species. 

 To further examine factors that impact population connectivity and population 

persistence in crayfishes, we examined genetic diversity in the imperiled Pristine 

Crayfish, Cambarus pristinus. It is a headwater-stream adapted crayfish, endemic to 

approximately 374 km2 on the Cumberland Plateau of Tennessee (Figure 1;Withers and 

Mccoy 2005; Rohrback and Withers 2006; Johansen 2018) and occurs only in lower 

order stream reaches (< 4th) and tributaries of the Upper Caney Fork River, Bee Creek, 

Big Brush Creek, and Cane Creek systems of the Caney Fork and Sequatchie River 

systems (Rohrback and Withers 2006; Johansen et al. 2016). Within these tributaries, 

Williams et al. (2004) noted that occurrence was directly related to the presence of large 

flat rocks in shallow pools with low flow, leading to a patchy distribution within each 

tributary. It is unclear if pool habitat use is related to habitat specificity, congener 

competition (C. parvoculus and C. sphenoides), or some other factor. At several sites, C. 

pristinus occurs in low densities (less than 50 individuals per 100 m2; Johansen et al. 

2016).   

 There are two distinct morphological forms of C. pristinus: the nominal form, 

which occurs only within the Caney Fork River system (referred to herein as the Caney 
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Fork form) and the Sequatchie form, whose range spans a drainage divide, found in the 

Sequatchie River system (Tennessee River drainage) and one tributary of the Caney Fork 

River system (Cumberland River drainage; Figure 1). The forms are allopatric and 

distinguishable based on differences in gonopod morphology (Rohrback and Withers 

2006). Within the Caney Fork form’s range, many tributaries of the Caney Fork River 

system (excluding those of the Upper Caney Fork and within the Bee Creek system that 

are on the Cumberland Plateau) join the Caney Fork mainstem after it flows off the West 

Escarpment of the Cumberland Plateau (Figure 1). The West Escarpment is characterized 

by stark drops in elevation where many streams have, through erosion, created confined, 

fast-flowing gulfs or ravines (Bouchard 1975). Such drastic changes in stream gradient 

may have created long-standing barriers or filters to gene flow among tributary 

populations of C. pristinus from these areas of the Caney Fork. Because C. pristinus is a 

headwater-stream specialist, it is likely that the larger order (>4th order) reaches of the 

Caney Fork River also may limit dispersal. Headwater-stream specialists are adapted to 

dispersing within small stream systems and may be unable to disperse across or within 

streams that have shifted in topography and hydrology as the river becomes larger (Hurry 

et al. 2015; Paz-Vinas et al. 2015; Schmidt and Schaefer 2018b). For example, two small-

stream adapted fishes, including Etheostoma basilare, the Corrugated Darter, and 

Etheostoma akatulo, the Bluemask Darter, show evidence of reduced population 

connectivity or isolation among tributaries of the Caney Fork River, suggesting the 

mainstem Caney Fork River may serve as a barrier to their dispersal (Hollingsworth Jr. 

and Near 2009; Robinson et al. 2013). Similarly, the Sequatchie form is distributed across 

a drainage divide (Caney Fork River flows to the Cumberland River drainage and the 
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Sequatchie River flows to the Tennessee River drainage). For aquatic organisms in 

general, but especially those with presumed low dispersal potential, drainage divides 

often can be barriers to gene flow as seen in the White-clawed Crayfish, 

Austropotamobius pallipes, and the Barrens Topminnows, Fundulus julisia (Gouin et al. 

2006; Hurt et al. 2017). It is important to evaluate how historical processes such as these 

have shaped gene flow, population structure, and distribution of a species as these 

processes can leave genetic signatures that are detected by genetic markers, such as 

microsatellites, used to assess more contemporary levels of population connectivity or 

isolation and thus, lead to incorrect conclusions about how contemporary processes have 

impacted the populations studied (Balkenhol et al. 2009; Zellmer and Knowles 2009; 

Davis et al. 2014; Epps and Keyghobadi 2015). Therefore, our first objective was to 

determine if drainage boundaries, physiographic breaks, changes in hydrology, or other 

geological features have created long-standing isolation among populations of C. 

pristinus. In addition, we assessed whether the two forms distinguished by morphological 

differences showed genetic divergence, representing distinct genetic lineages. 

 Recent surveys have reported loss of C. pristinus at several historical localities 

(Williams et al. 2004; Withers and Mccoy 2005; Rohrback and Withers 2006; Johansen 

et al. 2016) often in conjunction with anthropogenic disturbances such as bridge 

construction. Population loss can contribute to increased isolation of extant populations, 

increasing the likelihood of further extirpation due to loss of genetic diversity through 

genetic drift (Frankham 1995a). Given these observations, our second objective was to 

identify contemporary patterns of genetic diversity and population structure in C. 

pristinus. Given the expectation of strong IBD patterns in riverine taxa, we expected 
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contemporary population structure would be influenced by the spatial arrangement of 

populations, but also by increased habitat alteration and anthropogenic disturbances 

leading to reduced population connectivity relative to observed historical connectivity. 

The small geographic range, small population size, and headwater-stream specialization, 

and potential habitat specificity suggests that C. pristinus has an increased susceptibility 

to isolation by habitat fragmentation. This study will provide a much-needed assessment 

of how this and other similar species may have responded to both historic geological 

processes or features of the environment and to contemporary anthropogenic activities 

that alter population connectivity. 

Methods 

Sample collections 

 Cambarus pristinus specimen collection occurred from October, 2017 to October, 

2018 using standard seining and dip net methods (Parkyn 2016) at 13 of the 30 known 

historical localities in the Upper Caney Fork and Sequatchie River drainages (Table 1; 

Figure 1); other historical localities were not sampled due to lack of landowner 

permission or proximity to previously collected sites (Figure 1). In addition, four non-

historical localities in the Sequatchie River drainage were sampled (Table 1). Genetic 

samples were collected by taking a specimen’s chelae or the whole specimen in 95% 

ethanol for DNA preservation. Whole specimens were collected if chelae were 

reduced/absent or if total carapace length (TCL) was < 16 mm to ensure enough tissue for 

future genetic analyses.  
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DNA extraction 

 DNA was extracted from chela or abdominal tissue using a Qiagen DNEasy 

Blood and Tissue kit following standard manufacturer protocols. Because exoskeleton 

debris impaired our extracted DNA and resulted in PCR failure, we removed debris from 

all tissues under a microscope prior to extraction. Two elutions were used to generate a 

180 L and 80 L volume of extracted DNA. DNA was quantified on a NanoDrop ND-

1000 Spectrophotometer (Thermo Fisher Scientific). Samples over 100ng/L were 

diluted to a concentration of 30 ng/L for microsatellite locus amplification. Any 

concentrations under 100 ng/L were used undiluted in microsatellite locus 

amplification. No dilutions were created for mitochondrial gene sequencing.  

Mitochondrial DNA data collection and analyses 

Five individuals per locality, except for Long Fork (LF) where only a single 

individual was collected and used, were amplified using Polymerase Chain Reaction 

(PCR) and sequenced for the mitochondrial DNA (mtDNA) Cytochrome Oxidase 

Subunit I (COI) gene using previously published primers (Folmer et al. 1994). PCR 

reactions used a 25.0 L total reaction volume with 2.00 L of individual DNA, 0.75 L 

of 25mM MgCl2 (New England Biolabs), 2.50 L of Standard 10X buffer (New England 

Biolabs), 0.50 L of 10mM dNTP (New England Biolabs), 1.00 L 10pM primer 

LCO1490, 1.00 L 10pM primer HCO2198, 0.25 L 5000 U/mL Taq Polymerase (New 

England Biolabs), and 17.00 L of PCR water.  Thermocycler conditions included 35 

cycles of the following: 30s at 94C, 30s at 50C, and 90s at 72C, which occurred after 

an initial denaturization step of 3 minutes at 94C. These steps were followed by a final 
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extension of 5 minutes at 72C. Sanger sequencing was performed by Yale’s DNA 

Analysis Facility and resulting sequences were aligned and edited using CodonCode 

Aligner v8.0.1 (Soft Genetics). To minimize the potential for pseudogenes, methods 

recommended by Buhay (2009) and Song et al. (2008) were followed. 

 To examine phylogeographic relationships among the resulting COI haplotypes, 

haplotype networks were constructed in TCS v1.2.1 using a statistical parsimony analysis 

(Templeton et al. 1992) with a 95% connection limit. Final haplotype network graphics 

were created in TCSBeautifier (Murias dos Santo et al. 2016). Additionally, a phylogenetic 

tree was constructed in MEGA v 7.0.26 (Kumar et al. 2016) using a maximum likelihood 

analysis with 1000 bootstraps. The Hasegawa-Kishino-Yano with gamma distribution 

(HKY+G) substitution model (Hasegawa et al. 1985) was used as the parameter model of 

sequence evolution. This was determined by the Akaike information criterion in MEGA’s 

model selection test consisting of 24 possible substitution models (Nei and Kumar 2000). 

The final graphic was created in FigTree v 1.4.4 (Rambaut 2012). 

Microsatellite genotype data collection 

 Eighty-two species-specific primers were examined for successful amplification 

and variation in the Caney Fork Form of C. pristinus. Forty-two loci successfully amplified 

but only 19 were polymorphic and scoreable (Table S2). These 19 loci were placed into 

five panels, consisting of four loci with each locus assigned a unique M13 dye tag for the 

entirety of the study. PCR reactions consisted of 10.00 L total volume including 1.00 L 

of 10X concentrate standard Taq reaction buffer - Mg free (New England Biolabs), 1.20 

L 25mM MgCl2 (New England Biolabs), 0.20 L 10 mM dNTPs (New England Biolabs), 

0.25 L 10pM forward primer, 0.50 L 10pM reverse primer, 0.10 L 5000 U/mL Taq 
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Polymerase, 0.10 L M13-labeled dye (Applied Biosystems, Inc.), and 1.00 L DNA. 

Thermocycler conditions consisted of 35 cycles of the following: 30s at 94C, 30s at the 

primer specific annealing temperature, and 90s at 72C, which occurred after an initial 

denaturization step of 1 minute at 94C. These steps were followed by a final extension of 

5 minutes at 72C and held at 12C until the PCR product could be retrieved. 

 The PCR products were multiplexed by panel and genotyped by the University of 

Florida Interdisciplinary Center for Biotechnology Research Genotyping and Gene 

Expression Core using the Liz 600 size standard and an AB3730 sequencer. The resulting 

genotypes were automatically scored in GeneMarker v1.6 (SoftGenetics), followed by 

manual confirmation and edits as needed. Microsatellite data were not generated for the 

Sequatchie form due to small sample sizes. 

Microsatellite marker validation 

 Potential scoring errors of microsatellite loci due to null alleles was evaluated 

using PopGenReport v3.0.4 (Adamack and Gruber 2014) in R; scoring errors due to large 

allele dropout and stutter were evaluated with MICRO-CHECKER v2.2.3 (Oosterhout et 

al. 2004). Null allele validation was conducted following methods of Waples and 

Manangwa et al. (2018, 2019). Linkage disequilibrium for all locus pairs and departures 

from Hardy-Weinberg equilibrium (HWE) per locus were tested with GENEPOP v1.1.2 

(Rousset 2008) in R. Parameters for HWE and linkage disequilibrium were evaluated 

with the default Markov chain parameter settings of 10,000 dememorization steps, 1,000 

batches, 10,000 iterations per batch and p-values were adjusted following Bonferroni 

corrections to reduce Type I errors (Rice 1989). 
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Spatial genetic structure 

 Genetic differentiation was assessed using two pairwise metrics as recommended 

by Meirmans and Hedrick (2011). Pairwise FST (Weir and Cockerham 1984) values were 

generated in GENETIX v4.05 (Belkhir et al.) and tested for significance using 10,000 

permutations of the data. Pairwise Jost’s D (Jost 2008; Jost et al. 2018) values were 

generated in PopGenReport v3.0.4 in R and tested for significance in GenAlEx v6.503 

(Peakall and Smouse 2006, 2012).  

 Pairwise FST and Jost’s D values were used to test for a signature of isolation by 

distance (IBD) using two pairwise geographic distance matrixes measured in Google 

Earth. One matrix consisted of pairwise log-transformed riverine distances (km). The 

second matrix was based on pairwise log-transformed Euclidean distance (km) to account 

for potential underground water flow between localities due to the Cumberland Plateau’s 

karst topography (Buhay and Crandall 2005; Finlay et al. 2006) or direct overland 

movements (Oliveira et al. 2015; Thomas et al. 2018). Significance was tested between 

geographic distance and genetic distance using a Mantel test with 10,000 randomizations 

of the data using IBD v1.52 (Bohonak 2002). Partial Mantel tests were used to assess if 

the physiographic break of the Cumberland Plateau escarpment or shift to a large 

mainstem river (>4th order; Figure 1) had any effect on genetic distance. Partial mantel 

tests were conducted using only the pairwise river distance measures. 

 STRUCTURE v2.3.4 (Pritchard et al. 2000) was used to further examine 

population sub-division. The initial run consisted of the following parameters: no a priori 

population assignment, a generalized admixture model, correlated allele frequencies, 5 

iterations for each value of K (K=1-9), and 10,000 burn-in Markov chain Monte Carlo 
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(MCMC) steps followed by 100,000 MCMC steps. The most likely number of population 

clusters was determined by using the mean log-likelihood (Ln[Pr(X|K)]) (Pritchard et al. 

2000) and ∆K (Evanno et al. 2005) methods in the program STRUCTURE HARVESTER 

web v0.6.94 (Earl and VonHoldt 2012).  

 Hierarchical analyses (Vähä et al. 2007; Janes et al. 2017) of initial clusters were 

run in STRUCTURE using the same parameters as the initial run. Subsequent analyses 

were run in STRUCTURE using sampling localities as priors in the LOCPRIOR model 

as recommended by Hubisz et al. (2009) to assess potential weak population structure. 

The program CLUMPAK v1.1 (Kopelman et al. 2015) was used to summarize and 

present the output of independent runs of each K. 

 Discriminant analysis of principle components (DAPC) can describe between-

subpopulation variation while minimizing within-subpopulation variation noise. DAPC 

was conducted in Adegenet v2.1.1 in R (Jombart 2008). The optimal number of clusters 

K was determined using the k-means procedure of the function find.cluster and inferred 

from the Bayesian Information Criterion (BIC; Figure S1). Parameters were established 

using 10,000 iterations and 100 randomly chosen starting centroids to allow the algorithm 

to converge. Five Principal Components (PC) were retained as determined by the 

function optim.a.score with 10 simulations.  

Genetic diversity estimation 

 Genetic diversity metrics for each distinct population cluster recovered from our 

structure analyses of the Caney Fork form were calculated in the R package 

PopGenReport v3.0.4. Metrics calculated for each cluster included mean number of 

alleles per locus (Na), percent of polymorphic loci, allelic richness (AR), private allelic 
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richness (PAR), and observed (Ho) and expected (He) heterozygosity. The inbreeding 

coefficient (FIS) was determined using GENETIX v4.05 (Belkhir et al. 2004) with 10,000 

permutations to test for significance.  All metrics calculated, except for PAR, were also 

estimated for the Caney Fork form overall.  

 Effective population size (Ne) was estimated using the linkage disequilibrium 

method in NeESTIMATOR v2.01 (Waples and Do 2010; Do et al. 2014) to account for a 

single year dataset. Effective population size was estimated per cluster and for the Caney 

Fork form with the upper and lower bounds determined by 95% CI and alleles with a 

frequency of <0.02 excluded to prevent upward bias of Ne (Waples 2006). 

 The program BOTTLENECK v1.2.02 (Piry et al. 1999) was used to test for recent 

population declines in each cluster and for the Caney Fork form. An excess of 

heterozygosity was tested using a two-phase model (TPM) with 0, 10, and 20% multistep 

mutation rates (Zachariah Peery et al. 2012) with 36% variation (Di Rienzo et al. 1994) 

via a Wilcoxon sign-rank test for significance. 

Results 

Sample collections 

 We obtained tissue samples from 10 of the 13 historical localities and one non-

historical locality. A total of 226 individuals were collected. At least 20 individuals were 

collected per site except for Little Laurel Creek (LLC), Spring Creek (SC), Flatrock 

Branch (FB), and Long Fork (LF; Table 1). All localities were included in our 

mitochondrial analyses to assess phylogeographic relationships. Only localities 

containing the Caney Fork form were used for our microsatellite analyses as explained in 

our methods. 
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Mitochondrial DNA data collection and analyses 

 We recovered 12 unique haplotypes from the 51 individuals of C. pristinus 

sequenced for the mitochondrial COI gene (Figure 2). Eight haplotypes were recovered 

for the 40 Caney Fork form individuals and four haplotypes were recovered for the 11 

Sequatchie form individuals. Two unique haplotype networks were recovered from the 

statistical parsimony analysis with a maximum connection limit of 11 steps (95%). One 

network consisted of the Caney Fork form and the second was comprised of the 

Sequatchie form (Figure 2).  One common haplotype was shared among all but one 

locality, SC, of the Caney Fork form (H1 in Figure 2). A common haplotype was shared 

among 2 localities of the Sequatchie Form (H11 in Figure 2). Haplotypes within the 

Caney Fork form network differed by one to four mutations and those within the 

Sequatchie form by one to five mutations; between networks haplotypes differed by 11 or 

more mutations (Figure 2).  

Similarly, two distinct clades, each representing a form, were recovered with 

>95% bootstrap support from our maximum likelihood analysis (Figure 3). There was 

low divergence and no definable geographic structure within forms (Figure S1). 

Sequence divergence estimates from uncorrected p-distances was greatest between forms 

at 2.3% (Figure 3). Sequence divergence within the Caney Fork form was lowest at 

0.12% and sequence divergence within the Sequatchie form was similarly low at 0.18% 

(Figure S2).  
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Microsatellite marker validation 

 A total of 169 individuals were genotyped for the Caney Fork form for the 19 loci 

examined.  Of these, 165 individuals were successfully genotyped at 16 or more loci and 

were retained for subsequent analyses (53/3135 missing genotypes; 1.8%). No evidence 

of scoring error, stutter, or allele dropout was found in any locus. Evidence of null alleles 

was found in 5 loci but at only 1–2 localities. All 19 loci were retained for subsequent 

analyses due to a lack of linkage disequilibrium across sites, no departures from HWE 

among loci, and the inconsistency of null allele among sites. 

Spatial genetic structure 

 Both the initial STRUCTURE analysis without a priori population assignments 

and the run using our eight Caney Fork form sites as priors in a LOCPRIOR model 

recovered K=3 as the most likely number of clusters using the mean log-likelihood 

method (Figure 4b). The ∆K method for the initial STRUCTURE analysis also indicated 

K=3 but recovered K=2 under our LOCPRIOR model. Due to the congruence of the 

initial analysis under both methods and the mean log-likelihood method under the 

LOCPRIOR model, a K=3 including Cluster A, Cluster B, and Cluster SC (Figure 4b) 

was used for the subsequent hierarchical analyses. Little to no admixture was observed 

among these three clusters (Figure 4b).  

Potential hidden structure was further examined using hierarchical STRUCTURE 

analyses for clusters recovered from our initial STRUCTURE output that included 

multiple sites. Cluster A, which included sites CF, LLC, PoC, MC and WF was 

examined using the LOCPRIOR model in which each site was used as a prior. The ∆K 

method indicated K=2 and the mean log-likelihood method indicated K=3, but both 
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recovered the West Fork (WF) as a distinct cluster. An additional STRUCTURE analysis 

excluding WF from Cluster A was conducted to determine if there was additional hidden 

structure in Cluster A; both the ∆K and mean log-likelihood methods recovered K=2, 

corresponding to site Meadow Creek (MC) and the Upper Caney Fork clusters (Figure 

4c). Cluster A was ultimately split into three clusters with sites MC and WF as distinct 

clusters and sites Caney Fork (CF), Pokepatch Creek (PoC), and Little Laurel Creek 

(LLC) within the third cluster (Upper Caney Fork cluster), with evidence of only low 

levels of admixture among these three clusters (Figure 4c). The hierarchical 

STRUCTURE analysis for Cluster B had congruence between the ∆K and mean log-

likelihood methods in that both recovered K=2. These two clusters represented sites 

WFLCC and PuC which had little to no admixture (Figure 4d). Ultimately, we recovered 

six distinct populations clusters denoted as: Upper Caney Fork Cluster, MC, WF, PuC, 

WFLCC, and SC clusters (Figure 4); most clusters were comprised of a single locality 

examined (Figure 4a).  

Six distinct clusters, using 5 principle components (PCs), also were inferred from 

the discriminant analysis of principle components (DAPC; Figure S1a; b; c). These six 

clusters were similar to the six distinct population clusters recovered from our 

STRUCTURE analyses except that some individuals from the Upper Caney Cluster were 

assigned to either the MC or WF cluster in our DAPC analysis; this discrepancy is likely 

due to the limits of the membership assignment algorithm (Figure S1d; e).  

Pairwise FST (range: 0.002–0.511) and Jost’s D values (range: 0.002–0.442) were 

similar across several comparisons and the majority were significant after Bonferroni 

correction. Spring Creek (SC) consistently had the highest values under both metrics 
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indicating that SC is the most genetically differentiated site (Table 3). The few sites 

where pairwise comparisons were not significant were between sites found within the 

Upper Caney Cluster recovered from our STRUCTURE and DAPC analyses providing 

support for connectivity among the sites within the Upper Caney Fork Cluster and 

isolation of all other sites, resulting in the 6 distinct population clusters recovered. 

We found no significant pattern of IBD using river distance (FST: R2=0.0776; 

p=0.1479, Jost’s D: R2=0.1266; p=0.091) and Euclidean distance (FST: R2=0.1570; 

p=0.0542, Jost’s D: R2=0.1511; p=0.0541). In all analyses, <16% of the total genetic 

variation was explained by geographic distance between sites (Figure 6). Our partial 

mantel tests showed a significant correlation between the West Escarpment of the 

Cumberland Plateau and our pairwise genetic metrics (Jost’s D: R2=0.7688, p=0.0001; 

FST: R2=0.6281, p=0.0001) and a non-significant correlation between the larger order of 

the Caney Fork River and our pairwise genetic metrics (Jost’s D: R2=0.0568, p=0.1462; 

FST: R2=0.0459, p=0.1080). However, our relationship between geographic and genetic 

distance was still non-significant after accounting for the effect of the West Escarpment 

of the Cumberland Plateau (FST: R2=0.0776; p=0.1582, Jost’s D: R2=0.0874; p=0.1494). 

Genetic diversity estimates 

 A total of 115 alleles were amplified across all loci with an average of 6.1 alleles 

per locus across all clusters (Range: 2–12 alleles). Allelic diversity was low overall, but 

relatively uniform among clusters, with Na ranging from 2.16–4.84 alleles and AR 

ranging from 1.89–4.03 alleles (Table 2). Observed (Ho) and expected heterozygosity 

(He) were similar across all clusters (range: 0.33–0.51 Ho; 0.38–0.54 He) except for PuC 

(Ho=0.16; He=0.20; Table 2), which had relatively lower heterozygosity. Private allelic 
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richness (PAR) was <0.10 except for WFLCC and SC. Half of the clusters did not have 

FIS values that differed significantly from zero but the other half had significant positive 

FIS values indicating the presence of inbreeding for those clusters (Table 2). A signature 

of a bottleneck event was detected for PuC with a 20% two phase model (TPM). There 

was no evidence for deviations from HWE after Bonferroni correction within any cluster 

(Table 2).  Ne varied among clusters (64.5–1347.5) but was low overall for the Caney 

Fork form with an estimate of 15.5 individuals (95% CI: 14.2–16.9). 

Discussion 

 Benthic, headwater-adapted species often have relatively low dispersal potential 

and exhibit hierarchical population structure due to natural instream conditions such as 

shifts in stream topography and hydrology (Hurry et al. 2015; Schmidt and Schaefer 

2018b). Additionally, for such species, human-mediated habitat fragmentation often has a 

greater impact on the persistence of populations, and thus the species overall, due to their 

already restricted dispersal potential and limited dispersal pathways (Ward et al. 1994; 

Alp et al. 2012; Paz-Vinas et al. 2015).  

For conservation management, it is important to disentangle population structure 

generated by geological features from structure created by anthropogenic disturbance. 

This is because structure related to anthropogenic habitat degradation or fragmentation 

can be confounded by or confused with signals from long-standing isolation from natural 

instream filters or barriers to gene flow (Zellmer and Knowles 2009; Davis et al. 2014; 

Epps and Keyghobadi 2015). Thus, we examined the potential for historic long-standing 

isolation within C. pristinus due to natural instream factors such as physiographic breaks 

and changes in river size, or past vicariance, and the natural degradation of genetic 
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similarity due to geographic distance known as isolation-by-distance (IBD). Given 

human-mediated habitat degradation and population extirpation observed in C. pristinus, 

we also evaluated contemporary population connectivity. We found that historical 

connectivity was maintained within the nominate form of C. pristinus (Caney Fork form) 

despite potential geological and hydrological barriers but found signatures of increased 

population isolation under contemporary processes. Contemporary signatures of 

increased isolation were not attributed to IBD. We also found evidence of divergence 

between the nominal Caney Fork form and the Sequatchie form, supporting the 

hypothesis that these represent distinct taxa.  

Phylogeography of Cambarus pristinus 

 Previous studies have shown that large mainstem portions of rivers, changes in 

geology through physiographic breaks, and drainage boundaries serve as filters or 

barriers to dispersal of various benthic, aquatic taxa and that these barriers lead to long-

standing isolation (Hughes et al. 1995; Fetzner and Crandall 2003; Nguyen et al. 2004; 

Hollingsworth Jr. and Near 2009; Kanno et al. 2011; Lamphere and Blum 2011; Hurry et 

al. 2015). Therefore, we expected to find signatures of long-standing isolation within C. 

pristinus attributed to reduced dispersal across a drainage divide, across the larger river 

portions of the mainstem Caney Fork River, and changes in stream gradient associated 

with the physiographic break of the Western Escarpment of the Cumberland Plateau. 

Although we found divergence between the two forms, suggesting their long-standing 

isolation, we found no evidence to suggest long-standing isolation within either form due 

to these presumed barriers. Each form had a common haplotype that was shared among 

the majority of sampled localities and haplotype divergence within each form was low; 
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together these data indicate that gene flow was likely maintained among populations at 

some level historically. This contrasts with the high degree of divergence exhibited by E. 

basilare, a Caney Fork River endemic. Like C. pristinus, E. basilare are benthic, and 

small-stream adapted with a presumed limited dispersal potential, particularly across 

large river habitats. Unlike C. pristinus, E. basilare displays a high degree of micro-

endemism in which populations show evidence of isolation among tributary systems of 

the Caney Fork River. For example, each of several tributary systems to the Caney Fork 

(where E. basilare occurs) contains a different cryptic species of E. basilare; diverging 

between 8-2 mya. The authors attributed isolation of populations among tributaries to the 

strict breeding habitat requirements and reduced larvae dispersal potential of these 

species (Hollingsworth Jr. and Near 2009; Robinson et al. 2013; Fluker et al. 2014).  

Crayfishes, however, may have less stringent habitat requirements for successful 

breeding. Ovigerous females of Cambarus friaufi, the Hairy Crayfish, opportunistically 

find brooding refuge (Black et al. 2015) and Procambarus clarkii, the Red Swamp 

Crayfish, readily disperses when brooding or caring for young (Oliveira et al. 2015). In 

addition, juvenile crayfish have been observed to disperse after becoming independent 

from the mother (Miller et al. 2014b; Glon et al. 2019). The relaxed breeding 

requirements and increased juvenile dispersal may explain why C. pristinus does not 

exhibit the same degree of isolation exhibited in darters of the Caney Fork River system. 

However, additional work is needed to test this explicitly. Sites SC of the Caney Fork 

form and LF of the Sequatchie Form each exhibited only a single haplotype unique to 

that site. For site LF this may suggest that the mainstem Big Brush Creek limits dispersal 

within the Sequatchie form although it is more likely a result of low sample size and 
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additional sampling would be needed to provide resolution. Site SC lies at the periphery 

of the geographic range of the Caney Fork form of C. pristinus. Populations found at the 

edge of a species’ range typically are constrained by less favorable habitat that may 

reduce migration rates, increase isolation, and reduce genetic diversity (Eckert et al. 

2008; Micheletti and Storfer 2017).  

Our study is not alone in showing historic connectivity within crayfish on the 

Cumberland Plateau. The broadly distributed crayfishes, Cambarus parvoculus 

(Mountain Midget Crayfish), C. jezerinaci (Spiny Scale Crayfish), and C. distans 

(Boxclaw Crayfish),  all exhibit similarly low haplotype diversity and divergence (Thoma 

and Fetzner, Jr 2008), however these species appear to be more generalist in their habitat 

requirements.  Historic connectivity has been maintained in other headwater stream-

adapted crayfish as well. Euastacus bispinosus, the Glenelg Spiny Crayfish, was shown 

to maintain historic connectivity across drainages in Australia (Miller et al. 2014a). 

Additionally, all headwater-stream specialists species may not exhibit the same dispersal 

limitations and additional factors such as density, drainage shape, and variation in large 

river distance separating headwater habitats should be considered (Schmidt and Schaefer 

2018a)  

The recovery of unique, divergent haplotypes that were sorted into two divergent 

clades, suggests long-standing isolation of the two morphologically distinct forms of C. 

pristinus. The distribution of these two forms, however, does not correspond to 

contemporary geographic breaks examined, given that the Sequatchie River form spans 

the Cumberland-Tennessee River drainage divide. This pattern of discord between 

divergence and contemporary geographic breaks have been observed in several other 



22 
 

aquatic species (Buhay et al. 2007; Berendzen et al. 2008; Wagner and Blanton 2017). 

This phylogeographic pattern may reflect one of several alternative scenarios. For 

example, ancestral populations within the Caney Fork River may have experienced past 

vicariance resulting in two forms in this system with subsequent invasion of the 

Sequatchie system through underground, overland, or headwater transfer. Alternatively, it 

may reflect isolation of a widespread ancestral species between the two drainages with 

subsequent transfer of the Sequatchie form into the Caney Fork River. Given the distance 

that separates the confluence of the Tennessee and Cumberland Rivers (in western 

Kentucky) and the absence of any records of the species in streams > 4th order in size, it 

seems less plausible that the current distribution of the Sequatchie form is due to long-

distance dispersal through these two drainages. Estimation of divergence times from taxa 

closely related to C. pristinus and also found on the Cumberland Plateau would suggest 

the two forms of C. pristinus diverged sometime during or after the Pleistocene (Crandall 

et al. 2015). It is likely divergence between the two forms is related to climate 

oscillations or shifts in stream gradient and drainage patterns, which have contributed to 

speciation of several lineages of freshwater taxa (Thornbury 1965; Near et al. 2001; 

Berendzen et al. 2003, 2008; Kozak et al. 2006). Estimation of divergence times for the 

two lineages would help link the observed patterns to specific geological events in the 

area and to evaluate and test for potential alternative scenarios that may have led to 

divergence of the two forms.  
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Contemporary genetic diversity  

 Although not directly comparable due to variation in alleles examined, 

heterozygosity and allelic richness of the Caney Fork form of C. pristinus were similar to 

values observed for other imperiled crayfishes (Azuma et al. 2011; Gouin et al. 2011; Li 

et al. 2012; Gross et al. 2013; Miller et al. 2014a). Heterozygosity and allelic richness of 

several imperiled crayfishes, including C. pristinus, were relatively lower when 

compared with non-imperiled crayfishes such as Procambarus clarkii, the Red Swamp 

Crayfish (Li et al. 2012; Table S4). This suggests that C. pristinus has reduced adaptive 

potential when compared to non-imperiled crayfishes (Frankham 1995). 

 The Caney Fork form overall did not exhibit evidence of a bottleneck, however, 

site PuC (Puncheoncamp Creek), showed signatures of a bottleneck, suggesting a recent 

drastic decline in population size at this site. The Cumberland Plateau has experienced 

extensive sandstone and coal mining activity until the Surface Mining Control and 

Reclamation Act of 1977 (Schorr et al. 2006) and Puncheoncamp Creek historically had 

mining practices in its headwaters directly upstream of our sampling site (Figure S3; 

Moore 1985). Additionally, several abandoned mining sites have been repurposed for 

silvicultural practice. Withers and McCoy (2005) expressed that the majority of sub-

watersheds within the range of C. pristinus drain large tracts of timber management land 

and several streams were not protected from the deleterious effects of sediment transport 

to the stream, which may result in loss of interstitial space. Crayfish density has been 

reported to decline in the presence of mining and silviculture activities due to the loss of 

interstitial space, increase of metal pollutants, and reduced canopy cover (Allert et al. 

2012, 2013; Welsh and Loughman 2015). Allert (et al. 2012, 2013) found that the 
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greatest impacts to crayfish density occurred directly downstream of mining sites with 

reduced effects as distance from mines increased. Surface and deep anthracite coal-

mining have been designated as major factors in the decline of the federally listed 

Guyandotte Crayfish, Cambarus veteranus (Loughman et al. 2016) and logging practices 

have been a concern for several other crayfishes, including the Piedmont Blue Burrowing 

Crayfish, Cambarus harti and the vulnerable Kiamichi Crayfish, Faxonius saxatilis 

(Jones and Bergey 2007; Helms et al. 2013).  

 Other C. pristinus sites may have experienced past declines in population size that 

were not detected by our bottleneck analysis, which relies on measures of heterozygote 

excess. This method requires a reduction of 50 – 80% of the effective population to detect 

bottlenecks two-thirds of the time, even when additional markers are included (Hoban et 

al. 2013). In addition, other factors such as pre-bottleneck genetic diversity, bottleneck 

persistence, when the bottleneck occurred, and population growth can influence or 

obscure genetic signals (Williamson-Natesan 2005; Zachariah Peery et al. 2012).  

 We found evidence of inbreeding at several sites (WFLCC, PoC, SC, and PuC; 

Table 2). This was not surprising for PuC, because it showed signatures of a bottleneck 

and inbreeding often occurs after a bottleneck event (Hedrick and Kalinowski 2000). 

However, inbreeding can occur in small population without a prior bottleneck event. All 

clusters except for SC, had inbreeding coefficients with 95% confidence intervals that 

spanned zero. Thus, we could not confidently conclude the occurrence of inbreeding at 

the population level (Table 2; Colegrave and Ruxton 2003). However, we recovered a 

significant inbreeding coefficient for the Caney Fork form (FIS = 0.22620) with a 95% 

confidence interval that did not span zero. This result is concerning because, in many 
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species, inbreeding often leads to reduced fitness and an increased extinction risk 

(Frankham 2005; Wright et al. 2008). However, crayfishes may have an inherent degree 

of inbreeding due to poor dispersal ability (Miller et al. 2014a) and dominant hierarchical 

social structure, where dominant male crayfishes have additional mating opportunities 

(Villanelli and Cherardi 1998; Tierney et al. 2000; Moore and Bergman 2005). However, 

several crayfishes of Cambaridae exhibit polyandry with 2-3 males siring a single clutch 

(Walker et al. 2002; Yue et al. 2010b; Kahrl et al. 2014) and polyandry is thought to 

offset inbreeding depression by increasing half-sib progeny and decreasing full-sib 

progeny (Tregenza and Wedell 2000; Cornell and Tregenza 2007). It is unlikely that the 

significant inbreeding coefficient for the Caney Fork form is only due to mating 

strategies since we observed low effective population size estimates, low allelic richness, 

and localized bottleneck events in the species as well. 

 In wild populations of animals, the breeding population (Ne) is on average 

approximately 10% of the population census size (Frankham 1995b). Johansen et al. 

(2016) estimated a census size for several populations of the Caney Fork form of C. 

pristinus; estimates ranged from 45–168 individuals (Table S3). Our point estimates of 

effective population size ranged from 64.5–1347.5 but the upper bounds of our 

confidence intervals were infinite for many clusters reducing our confidence in the Ne 

estimates (Table 2). However, the Caney Fork form of C. pristinus had low point 

estimates of Ne for most clusters examined and for the species overall. Individual cluster 

estimates are likely impacted by low sample sizes, but the estimate for the species overall 

had narrow confidence intervals, around the point estimate of only 15.5 individuals. This 

low estimate likely reflects both a low number of individuals and low genetic diversity in 
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the breeding population. The 100/1000 rule recommends that a Ne of 100 be maintained 

to prevent inbreeding depression and an Ne of 1000 to maintain evolutionary potential 

(Frankham et al. 2014). Following this rule, our data suggests that the Caney Fork form 

of C. pristinus lacks a sufficient breeding population size or has insufficient genetic 

diversity in the breeding population to prevent inbreeding and has reduced evolutionary 

potential.  

 A common pattern observed in aquatic systems is an increase in genetic distance 

as geographic distance increases or IBD (Wright 1943). We did not find support for IBD 

when using river distance in the Caney Fork form of C. pristinus (Figure 6). It is possible 

that IBD is masked at the small spatial scale that is the extent of our study, especially if 

low levels of gene flow are maintained as suggested by the few non-significant pairwise 

FST and Jost’s D values we observed (Table 3; Phillipsen et al. 2015; Menger et al. 2017). 

We continued to find a non-significant IBD even after accounting for the significant 

correlation between genetic distance and the West Escarpment of the Cumberland Plateau 

suggesting that something other than geographic distance, such as habitat degradation, is 

generating the observed population structure.  

 It is unlikely that C. pristinus disperses across land. We recovered a non-

significant IBD relationship when using Euclidean distance and a lack of population 

connectivity across headwater systems from our STRUCTURE analysis. If aquatic 

organisms maintain geneflow via overland dispersal, then populations across headwater 

systems in close proximity would exhibit higher degrees of genetic similarity than 

population spaced far apart within a single headwater system. (Finn et al. 2007). We 

found significant pairwise FST values among our populations and a high degree of 
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dissimilar genetic diversity metrics between our two nearest sites (<2km) across land, 

PuC and WFLCC. In addition, we found greater similarity across several genetic 

diversity metric within the Upper Caney Fork headwater system than among the Upper 

Caney Fork and Bee Creek headwater systems. Even though overland dispersal can occur 

within crayfishes it likely differs among species. For instance, even in dry periods, 

several species of stream-dwelling crayfish choose to burrow into the hyporheic zone 

instead of dispersing across land to available water sources (Jones and Bergey 2007; 

DiStefano et al. 2009; Dyer and Brewer 2018). 

The congruence between our pairwise FST values and the STRUCTURE and 

DAPC analyses provide support for six isolated populations of the Caney Fork form of C. 

pristinus: (1) Upper Caney, (2) MC, (3) WF, (4) PuC, (5) WFLCC, and (6) SC. This high 

degree of contemporary population isolation contrasts with our phylogeographic analysis 

that showed connectivity was maintained throughout the Caney Fork form’s range 

historically. One explanation is that the retreating edge of the Western Escarpment has 

resulted in a loss of underground stream connectivity (Anthony and Granger 2007a) as 

indicated by cave abandonment along the tributaries of the Caney Fork River (Anthony 

and Granger 2004). Cave abandonment is estimated to have begun ~5Mya with 

subsequent abandonment occurring into the early Holocene (Anthony and Granger 

2007b). Loss of underground stream connectivity has been documented in several cave-

obligate fauna, including crayfishes along the escarpment lines of the Cumberland 

Plateau (Buhay and Crandall 2005; Finlay et al. 2006; Buhay et al. 2007; Niemiller et al. 

2008; Niemiller and Zigler 2013). 
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However, given that our data suggests populations maintained some level of gene 

flow historically and cave abandonment occurred over a long geologic time span, it is 

unlikely loss of underground connectivity has contributed to contemporary population 

isolation. Instead, the high degree of contemporary population isolation observed most 

likely reflects human-mediated habitat alterations and subsequent population loss 

resulting in reduced extant population size and connectivity. Anthropogenic disturbance 

such as mining and silviculture practice have been reported throughout the range of C. 

pristinus with several anthropogenic sites near the six distinct population clusters we 

recovered (Figure S3). Johansen (2018) found that the likelihood of C. pristinus 

occupancy would decrease as evergreen forest cover or conductivity increased. Previous 

studies have shown that acid mine drainage from mining can increase conductivity and 

the bulk of silviculture practice on the Cumberland Plateau is from loblolly pine, an 

evergreen, plantations (McGrath et al. 2004; Schorr et al. 2013). Coal mining activity on 

the Cumberland Plateau has been reported to reduce salamander richness  (Schorr et al. 

2013; Muncy et al. 2014), alter macroinvertebrate assemblages (Gangloff et al. 2015), 

create local extirpation and species replacement in native fishes (Schorr et al. 2006), and 

reduce population density or create local extirpation in crayfishes (Allert et al. 2012, 

2013; Welsh and Loughman 2015).  

Conservation implications for Cambarus pristinus 

 The observed geographic separation, phylogenetic divergence, and morphological 

differences between the two forms of C. pristinus support recognition of the Sequatchie 

form as a distinct species and we recommend it be provisionally referred to as Cambarus 

aff. pristinus. Due to this, the geographic range of nominal C. pristinus (herein the Caney 
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Fork form) is restricted to the Upper Caney Fork and Bee Creek system of the 

Cumberland Plateau. 

 Although, a population genetics analysis is needed to assess genetic diversity and 

gene flow within Cambarus aff. pristinus, repeated failures to detect individuals at 

several localities is concerning and may indicate local extirpation. Several individuals we 

collected had symptoms of the lethal Porcelain Disease, Thelohaniasis. Porcelain Disease 

occurs in several decapod crustaceans and is caused by the microsporidian parasites of 

the genus Thelohania (El-Matbouli and Soliman 2006). Disease prevalence is thought to 

be linked to increased stress and habitat alteration (Imhoff et al. 2009). Loblolly pine 

plantations are found throughout the range of Cambarus aff. pristinus; these plantations 

can alter water chemistry and stream habitat and thus, the benthic community structure 

(McGrath et al. 2004). We propose that additional surveys be conducted to determine the 

extent of the geographic range of Cambarus aff. pristinus and that future monitoring to 

detect Porcelain Disease be incorporated. In addition, a thorough assessment of genetic 

diversity within Cambarus aff. pristinus is warranted to determine population persistence. 

 Low genetic diversity, Ne estimates, presence of inbreeding, and population 

structure exhibited within Cambarus pristinus sensu stricto (Caney Fork form) suggests 

that they have a reduced evolutionary potential and ability to weather future stochastic 

events (Frankham 1995a; Lowe and Allendorf 2010), warranting continued state 

protection. In addition, we observed a high degree of contemporary population isolation. 

This is in stark contrast to historic connectivity as discussed and implies human-mediated 

habitat alternations have likely impacted this species. However, additional work from a 

landscape genetics approach would provide a more robust test for effects of specific 
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landscape and environmental factors have contributed to the observed patterns of genetic 

diversity observed. Cambarus pristinus sensu stricto will also benefit from habitat and 

occupancy modeling, which would help to understand how abiotic factors have 

influenced population growth and persistence and outline favorable habitat conditions. 

Continued population genetic monitoring would establish trends in genetic diversity in 

the species and populations, which can be used to assess the actual impact of 

conservation actions. Additionally, because our analyses only provide a single snapshot 

of genetic diversity, adding time-series sampling would lead to more robust estimates of 

Ne (Gilbert and Whitlock 2015).  
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Table 1. Locality information and number of individuals of Cambarus pristinus captured. A “+” denotes new localities identified 

and sampled for Cambarus pristinus. Site ID corresponds to those used in all other tables and figures.  

 

Form 
Site ID Stream County Date Collected Latitude Longitude 

No. 

Captured 

Caney Fork CF Caney Fork River Cumberland 14-Oct-2017; 08-May-2018 35.99108 -85.18052 24 

Caney Fork WF West Fork Cumberland 14-Oct-2017; 08-May-2018 35.92435 -85.21365 29 

Caney Fork MC Meadow Creek Cumberland 14-Oct-2017; 08-Apr-2018 35.88828 -85.17790 27 

Caney Fork WFLCC West Fork Little 

Cane Creek 

Cumberland 14-Oct-2017; 08-May-2018 35.79953 -85.20750 23 

Caney Fork PoC Pokepatch Creek Cumberland 08-Apr-2018 ;08-May-2018 35.94527 -85.18546 30 

Caney Fork LLC Little Laurel Creek Cumberland 22-Jun-2018 35.84049 -85.12305 11 

Caney Fork SC Spring Creek Van Buren 23-Jun-2018 35.77052 -85.28789 19 

Caney Fork PuC Puncheoncamp Creek Cumberland 23-Jun-2018 35.83650 -85.22590 31 

Caney Fork  Henderson Branch Cumberland 23-Jun-2018 35.82225 -85.16087 0 

Sequatchie  CC Camp Creek Van Buren 11-Jan-2018 35.65099 -85.33764 21 

Sequatchie  FB Flatrock Branch + Sequatchie 09-Oct-2018 35.49406 -85.40233 12 

Sequatchie  LF Long Fork 2 Sequatchie 09-Oct-2018 35.50113 -85.40877 1 

Sequatchie   Big Brush Creek + Sequatchie/Bledsoe 08-Sep-2018; 08-Oct-2018 35.50017 -85.40623 0 

Sequatchie   Laurel Fork + Sequatchie 24-Jun-2018 35.52947 -85.43130 0 

Sequatchie   Unnamed Tributary 

to Bird Fork + 

Sequatchie 08-Sep-2018; 08-Oct-2018 35.48935 -85.43797 0 

Sequatchie   Glady Fork Sequatchie 09-Sep-2018; 09-Oct-2018 35.52543 -85.46857 0 

Sequatchie   Long Fork 1 Sequatchie 09-Sep-2018; 09-Oct-2018 35.50195 -85.45370 0 
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Table 2. Genetic diversity measures based on 19 microsatellite loci for 6 distinct population clusters examined for the Caney Fork 

form of Cambarus pristinus: mean alleles per locus (Na), allelic richness (AR), private allelic richness (PAR), observed (Ho) and 

expected (He) heterozygosity, inbreeding coefficient (FIS), p-values for Bottleneck, p-values for Hardy-Weinberg equilibrium 

(HWE), and percentage of polymorphic loci. Values in bold were significant (p < 0.05 for FIS and Bottleneck, and p < 0.003 for 

HWE after Bonferroni correction); n is the number examined per distinct population cluster. 

 

Cluster ID n Na 
Ne                    

(95% CI) 
AR PAR Ho He 

FIS                     

(95% CI) 
Bottleneck HWE 

% 

Polymorphic 

loci 

Upper Caney 58 3.95 
∞         

(827–∞) 
3.14 0.08 0.46 0.48 

0.03237                        

(-0.025–0.074)  
0.369 0.011 100% 

WF 25 3.21 
1046         

(58.3–∞) 
2.79 0.05 0.45 0.44 

0.00318                      

(-0.100–0.059) 
0.340 0.671 100% 

MC 25 3.05 
785.3         

(53.1–∞) 
2.56 0.00 0.44 0.43 

-0.01705                     

(-0.124–0.045) 
0.325 0.705 100% 

WFLCC 22 4.84 
136.6         

(52.7–∞) 
4.03 0.22 0.51 0.54 

0.08564                     

(-0.007–0.128) 
0.384 0.007 100% 

SC 19 2.16 
1347.5          

(19.3–∞) 
1.89 0.12 0.16 0.20 

0.22550                     

(0.069–0.300) 
0.892 0.009 68.42% 

PuC 16 2.58 
∞                

(26.9–∞) 
2.34 0.06 0.33 0.38 

0.14904                     

(-0.008–0.223) 
0.039 0.155 73.68% 

Species 

Overall 
165 6.10 

15.5                    

(14.2–16.9) 
2.66 - 0.41 0.42 

0.22620                     

(0.179–0.265) 
0.964 0.197 100% 
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Table 3. Pairwise measures of genetic and geographic distances used for the IBD analysis of the Caney Fork form of Cambarus 

pristinus based on 19 microsatellite loci (Figure 4). Site ID corresponds to those used in Figure 1 and defined in Table 1. a) 

Pairwise FST values (above the diagonal) and pairwise Jost’s D values (below the diagonal). Values in bold are significant at p < 

0.05 and values with an asterisk (*) are significant following Bonferroni correction (p < 0.0018). b) Pairwise river distance (above 

the diagonal) and pairwise Euclidean distance (below the diagonal) in kilometers. 

 

Site ID CF WF MC WFLCC PoC LLC SC PuC 

CF - 0.042* 0.062* 0.145* 0.010 0.002 0.412* 0.257* 

WF 0.038* - 0.097* 0.171* 0.065* 0.046 0.420* 0.313* 

MC 0.054* 0.086* - 0.181* 0.052* 0.034 0.426* 0.330* 

WFLCC 0.180* 0.209* 0.214* - 0.143* 0.131* 0.333* 0.229* 

PoC 0.010 0.061* 0.046* 0.180* - 0.009 0.441* 0.258* 

LLC 0.002 0.042* 0.029 0.170* 0.010 - 0.453* 0.283* 

SC 0.375* 0.379* 0.372* 0.322* 0.442* 0.394* - 0.511* 

PuC 0.266* 0.336* 0.347* 0.279* 0.275* 0.303* 0.433* - 

 

 

Site ID CF WF MC WFLCC PoC LLC SC PuC 

CF - 23.82 21.28 55.14 10.09 35.01 44.81 35.91 

WF 7.94 - 5.94 40.86 14.85 19.75 30.53 21.63 

MC 11.30 5.16 - 37.26 12.31 13.73 26.93 18.03 

WFLCC 21.30 13.90 10.10 - 46.14 51.07 15.07 26.95 

PoC 5.00 3.38 6.48 16.30 - 24.38 35.81 26.94 

LLC 17.40 12.40 7.16 8.88 12.80 - 40.74 31.84 

SC 26.20 18.40 16.40 7.93 21.50 16.70 - 16.62 

PuC 17.50 9.84 7.27 4.36 12.60 9.25 9.30 - 

a) 

b) 
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Figure 1. Known historical localities for Cambarus pristinus. The Caney Fork form is 

denoted by circles and the Sequatchie form is denoted by diamonds. A black “X” denotes 

an uncollected locality. Shapes filled with color denote sites where C. pristinus was 

detected and captured for use in our genetic assessments and unfilled shapes denote sites 

where C. pristinus was not detected. The white star denotes where the Caney Fork river 

becomes >4th order. The Cumberland Plateau is represented in gray and the surrounding 

regions are white. The thick black line represents the Western Escarpment of the 

Cumberland Plateau. Letters by shapes correspond to Site ID defined in Table 1. 
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Figure 2. The 95% statistical parsimony haplotype network of the 51 individuals of C. 

pristinus examined using the mitochondrial COI gene. Two networks were recovered, 

with each network corresponding to a single form of C. pristinus. Haplotypes differed by 

1-4 mutations within each form. The number of mutations between haplotypes of each 

form exceeded the connection limit of 11 mutational steps. A circle represents a single 

haplotype and the “H” numbers designate different haplotypes. Size of the circles reflect 

the number of individuals sharing that haplotype. Colors represent individual sites and 

correspond to Figure 1. Open circles represent unsampled haplotypes and the line 

between circles denote a single mutation. 

C. pristinus – Caney Fork form 

C. pristinus – Sequatchie form 
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Figure 3. Maximum likelihood 50% majority rule consensus tree from 1000 bootstraps 

recovered for Cambarus pristinus from the mitochondrial COI gene. Sequence 

divergences between species pairs are in parentheses. Colors identify localities and 

corresponds to those in Figure 1.  

Cambarus pristinus (2.3%) 

(1.8%) 
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Figure 4. STRUCTURE analysis based on 19 microsatellite loci from 165 individuals 

across eight localities representing the Caney Fork form of Cambarus pristinus. a) 

Geographic distribution of the six population clusters inferred from the hierarchical 

STRUCTURE analyses (by colored polygons). Colors correspond to the inferred 

ancestral population depicted in the STRUCTURE plots (b-d). Letters by circles 

represent Site ID defined in Table 1.  b) Initial STRUCTURE analysis with and without 

use of LOCPRIOR. c) Hierarchical STRUCUTRE plot using LOCPRIOR of Cluster A 

recovered in the initial STRUCTURE analysis. d) Hierarchical STRUCTURE plot using 

the LOCPRIOR for Cluster B recovered in the initial STRUCTURE analysis. b-d) Boxes 

designate localities and the color of each individual bar within a box denotes population 

ancestry of each individual. Letters below boxes and by circles correspond to site ID in 

Table 1. Delta K method is denoted by ”∆K”; the mean log-likelihood method is denoted 

by “µL(K)”, and K represents the number of clusters inferred. An “*” identifies the 6 

distinct clusters recovered from all STRUCTURE runs. 
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Figure 5. Discriminant analysis of principle components (DAPC) based on 19 

microsatellite loci and with individuals labeled by locality for the Caney Fork form of 

Cambarus pristinus.         Ellipses denote the 6 genetic clusters recovered that correspond 

to the 6 clusters recovered in the STRUCTURE analyses (Figure 4). The top-right inset 

shows retained discriminant eigenvalues of the 5 principal components in relative 

magnitude. The first two principal axes are shown, with the first on the vertical axis. 
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Figure 6. Isolation by distance analysis for the eight sites of Cambarus pristinus showing 

the relationship between geographic (log-transformed river and Euclidean kilometers) 

and genetic distances (FST and Jost’s D) based on 19 microsatellite loci. For 

corresponding pairwise values refer to Table 3. Comparisons using log-transformed river 

distances are in black and those using log-transformed Euclidean distances are in gray 

(River- FST: R2=00776; p=0.1479, Jost’s D: R2=0.1266; p=0.091; Euclidean- FST: 

R2=0.1570; p=0.0542, Jost’s D: R2=0.1511; p=0.0541). 
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Table S1. Genetic diversity metrics summarized from the literature for several imperiled and non-imperiled crayfish and 

compared to those for Cambarus pristinus generated herein. Species are grouped by family with continent in parentheses. Metrics 

include IUCN conservation status (CS) with vulnerable (V), data deficient (DD), least concern (LC), and endangered (EN); mean 

alleles per locus (Na); allelic richness (AR); observed (Ho) and expected (HE) heterozygosity. A “-“ indicates that genetic diversity 

metric was not reported. 

 

Species CS Na AR HO HE Citation 

Cambaridae (North America)       

   Pristine Crayfish (Cambarus pristinus) DD 6.10 2.66 0.41 0.42  

   Red Swamp Crayfish (Procambarus clarkii) LC      

Invasive populations  6.42–14.33 - 0.56–0.81 0.70–0.89 (Li et al. 2012) 

Native populations  14.58 - 0.65 0.88 (Li et al. 2012) 

Parastacidae (South America / Australia)       

   Glenelg Spiny Freshwater Crayfish (Euastacus 

bispinosus) 
V 1.0–2.3 1.07–1.75 0.004–0.42 0.03–0.36 (Miller et al. 2014a) 

Astacidae (Europe / North America)       

   Noble Crayfish (Astacus astacus) V 2.2–4.8 2.0–4.2 0.21–0.53 0.23–0.60 (Gross et al. 2013) 

   White-clawed Crayfish (Austropotamobius pallipes) EN 2.02 2.02 - 0.295 (Gouin et al. 2011) 

   Signal Crayfish (Pacifastacus leniusculus) LC 4 - 33 - 0.25–0.84 0.30–0.94 (Azuma et al. 2011) 

Cambaroididae (Asia)       

   Korean Crayfish (Cambaroides similis) DD 4.3–8.1 - 0.33–0.47 0.63–0.73 (Ahn et al. 2011) 
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Table S2. Primer sequences for 42 microsatellite loci optimized for the Caney Fork form of Cambarus pristinus and the 

Sequatchie form of C. pristinus including locus features: repeat motif, the number of alleles observed (Na), allele size range in base 

pairs (bp), and annealing temperature (Ta). Data are summarized from the number of individuals indicated except for loci in bold 

which are summarized from our full data set of the Caney Fork form of C. pristinus with 169 individuals and an exploratory data 

set of the Sequatchie form with 21 individuals.  

 

   C. pristinus Caney Fork form 

(n=6) 

C. pristinus Sequatchie form 

(n=1) 

Primer Primer sequence (5’ – 3’) Repeat 

Motif 

Na Allelic Range 

(bp) 

Ta (°C) Na Allelic Range 

(bp) 

Ta (°C) 

Cpris001 F: CACGACGTTGTAAAACGACGGCCTCCAAACTTGAAGAGAC 

R: TCAACTCCGTGCCTACTCAC 
AAAC 1 176 61 1 165 61 

Cpris002 F: CACGACGTTGTAAAACGACGGCTTCCTGACTTCGACAAC 

R: TCTCCACTTCCCTGTAACCC 
AAAC 1 226 61 1 217 61 

Cpris004 F: CACGACGTTGTAAAACGACGGATTCCACCAGAGCTGAGAG 

R: AAAGCAATGACTCCTGCTGG 
AAAC 1 285 63 1 285 63 

Cpris007 F: CACGACGTTGTAAAACGACAGAAAGCCTCGCAACAAATG 

R: GGCTTCCTGGTCCCTATCATC 
AAAG 5 328–344 61 1 332 61 

Cpris008 F: CACGACGTTGTAAAACGACGTGTCCCGTCTTCAATTCCC 

R: AAGTCAGTGTGCACCCTATG 
AAAG 1 374 62 1 378 62 

Cpris013 F: CACGACGTTGTAAAACGACTTAGCTTGCATCCCGAGTTG 

R: GACACCTGTTGCACACTACC 
AAGT 1 309 62 1 309 62 

Cpris016 F: CACGACGTTGTAAAACGACGAGCAGGGAAGATAGATGGAC 

R: TGCAGGGTGAACAGGTAAGG 
ACAG 5 206–220 63 3 210–220 63 



 

 

 

6
1 

   C. pristinus Caney Fork form 

(n=6) 

C. pristinus Sequatchie form 

(n=1) 

Primer Primer sequence (5’ – 3’) Repeat 

Motif 

Na Allelic Range 

(bp) 

Ta (°C) Na Allelic Range 

(bp) 

Ta (°C) 

 

Cpris017 

 

F: CACGACGTTGTAAAACGACAGGATCTGAACGAGTCTGTGG 

R: GCAGCCTCAAACCTTGGATAG 

 

ACAG 

 

1 

 

244 

 

62 

 

1 

 

240 

 

62 

Cpris018 F: CACGACGTTGTAAAACGACCTACGTCCGTCCCATACCC 

R: CGTTCCCGTGTAGTACTGAAG 
ACAG 1 263 61 2 263–267 61 

Cpris019 F: CACGACGTTGTAAAAACGACATGTTGATAGGGTGAGGCTTC 

R: TCTGTGTCCGACTGTCTCTG 
ACAG 2 273–277 62 1 271 61 

Cpris021 F: CACGACGTTGTAAAACGACTCAGTGCTTGAGGAGAGAAGG 

R: TGCTTCTAATTAACCTGCCGG 
ACAG 3 317–329 60 4 317–325 60 

Cpris022 F: CACGACGTTGTAAAACGACTCTCATCTTAGATTCACTGCGG 

R: ACCTGTGTGTACCGATTGTG 
ACAG 1 361 61 1 361 61 

Cpris026 F: CACGACGTTGRAAAACGACTTCTCGCCATTTCCTTCAGC 

R: GTGTGCCATTAAAGGAGCCTC 
ACAT 7 232–256 62 6 236–264 62 

Cpris031 F: CACGACGTTGTAAAACGACGGTATGCAGGCGRCAAGATG 

R: GACAGACTTCCATGCAAGGG 
ACAT 6 322–338 62 4 322–334 62 

Cpris034 F: CACGACGTTGTAAAACGACGCCCAACAGTCAGTCCAAAC 

R: ACTGGCAAGACAAATGAGCTG 
ACAT 7 383–397 62 3 377–381 62 

Cpris037 F: CACGACGTTGTAAAACGACTCATACCCATCCTGTGACTGG 

R: TGCCTCTGTTCACCTGACAG 
ACAT 7 422–454 63 3 426–438 63 
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   C. pristinus Caney Fork form 

(n=6) 

C. pristinus Sequatchie form 

(n=1) 

Primer Primer sequence (5’ – 3’) Repeat 

Motif 

Na Allelic Range 

(bp) 

Ta (°C) Na Allelic Range 

(bp) 

Ta (°C) 

Cpris039 F: CACGACGTTGTAAAACGACAGCAGCCTATGTCCATCTCG 

R: CGCCTGTCATCGATAACCTTG 
ACGG 1 333 62 1 333 62 

Cpris040 F: CACGACGTTGTAAAACGACACACACACAGTCAGTCGTCG 

R: GTACACTGCCTAGGACCAAAC 
AGAT 2 141–149 63 2 141–149 63 

Cpris043 F: CACGACGTTGTAAAACGACCACCCAGTTGTGCTTGCAG 

R: ACAGTCGGTCCATTTCATCATC 
AGAT 1 170 61 1 170 61 

Cpris044 F: CACGACGTTGGTAAAACGACGATCGTTTGCAGTCAGAGGG 

R: TAGGCAGTGATGTGGTGGAG 
AGAT 1 255 61 2 267–271 61 

Cpris045 F: CACGACGTTGTAAAACGACGGTGGAGGATGGATTGGCAG 

R: TCGTAGATGTTGAATTAGCCGC 
AGAT 1 297 62 1 304 62 

Cpris046 F: CACGACGTTGTAAAACGACGATGAAGACCACTGCGCTAC 

R: CCGCCATCTATGTTGCTGTG 
AGAT 12 303–347 61 9 295–339 61 

Cpris047 F: CACGACGTTGTAAAACGACGGCCTCCCTCACTCTTACAG 

R: AACGAAACGCACCTCTTAGC 
AGAT 2 331–335 62 1 335 62 

Cpris048 F: CACGACGTTGTAAAACGACTCAGGGCACTCACTCTTAGC 

R: GGGTGGATGGATAGATGGAGAC 
AGAT 4 374–382 61 2 374–378 61 

Cpris049 F: CACGACGTTGTAAAACGACGGACTCGGTGCTGAACATTTC 

R: TTGACACAGTTGGGAGGAGG 
AGAT 7 440–468 62 4 448–464 62 

Cpris055 F: CACGACGTTGTAAAACGACTCGGACCTTGCATAGTAGGC 

R: TCTAAACAGGAGGATGGGTTGG 
ATCC 1 188 60 1 188 60 
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   C. pristinus Caney Fork form 

(n=6) 

C. pristinus Sequatchie form 

(n=1) 

Primer Primer sequence (5’ – 3’) Repeat 

Motif 

Na Allelic Range 

(bp) 

Ta (°C) Na Allelic Range 

(bp) 

Ta (°C) 

Cpris057 F: CACGACGTTGTAAAACGACTCTCTACCCATCCATCTGCG 

R: ACGCTAAGCTCCTCTGACTG 
ATCC 1 348 62 1 348 62 

Cpris058 F: CACGACGTTGTAAAACGACACACCTCCATACAACCAAC 

R: ACTCTCAGACTCTTAACGACCC 
AAAC 2 162–164 62 2 164–168 62 

Cpris059 F: CACGACGTTGTAAAACGACACAGGGAGTGGTAAGGTGTC 

R: GTTGGGTCAGTCTGGTGTTG 
AAAC 3 183–191 62 2 183–187 62 

Cpris061 F: CACGACGTTGTAAAACGACTCCTGGGAAAGAAGTGTTGTG 

R: TCACCACCTTTCCTCATCCC 
AAAG 3 203–229 63 2 203–205 63 

Cpris062 F: CACGACGTTGTAAAACGACGCCCTGTAACGCCTTTCCAC 

R: CCATGGCGTTGTGGTAAGAC 
AAAG 1 312 64 1 312 64 

Cpris063 F: CACGACGTTGTAAAACGACTGTCGTCTCCCATTACCC 

R: TCAGGTGTTGACGAGGAAATC 
ACAG 10 213–245 64 6 208–232 64 

Cpris064 CACGACGTTGTAAAACGACCCCGCAAGCACAACTAGG 

R: ACTACCGAGACCCTGAGATAG 
ACAG 8 243–291 64 4 243–277 64 

Cpris066 F: CACGACGTTGTAAAACGACATGGGACCAACTGAGACCTG 

R: GTTAACAGACCAACCAGCACG 
ACAG 6 350–374 63 2 358–366 63 

Cpris068 F: CACGACGTTGTAAAACGACGCCACCCAGAGTTCATGTG 

R: GGATTTCACCTCCCAGATGG 
ACAT 8 183–211 62 6 164–195 62 

Cpris071 F: CACGACGTTGTAAAACGACAACTCAAGAGGATGGGCTGG 

R: GCCAGTTTGATGTCTACCTTCG 
ACAT 1 333 62 1 317 62 
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   C. pristinus Caney Fork form 

(n=6) 

C. pristinus Sequatchie form 

(n=1) 

Primer Primer sequence (5’ – 3’) Repeat 

Motif 

Na Allelic Range 

(bp) 

Ta (°C) Na Allelic Range 

(bp) 

Ta (°C) 

Cpris073 F: CACGACGTTGTAAAACGACGAGAGCTGAGCCAAAGTGTG 

R: GCTTGTTCACCTACTGCTGTC 
ACAT 2 406–410 62 2 401–413 62 

Cpris074 F: CACGACGTTGTAAAACGACTGACCAGCTTCCACGTATCC 

R: CCCATATTGACTGGCTTTCGC 
ACAT 2 362–368 64 2 362–368 64 

Cpris077 F: CACGACGTTGTAAAACGACACTGCAAGTGTCTGGTTTCC 

R: TTTGTACAGTCGGTTTGGCC 
AGAT 8 282–314 62 5 294–310 62 

Cpris078 F: CACGACGTTGTAAAACGACACTGACAAACACCCATTCTCTC 

R: GACCTTCCTTCCACCACCC 
AGAT 4 322–338 61 7 318–338 61 

Cpris080 F: CACGACGTTGTAAAACGACGCCCATCAGTTGAACCATCG 

R: TGTAACTGTCCCGCACTCC 
ATCC 1 183 60 1 183 60 

Cpris082 F: CACGACGTTGTAAAACGACACCACGACCAGCCTATGTTC 

R: AGACAGATGGGTGGATGGATAC 
ATCC 1 380 62 1 380 62 
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Table S3. Effective population size (Ne) estimates generated herein and population 

census size (Nc) estimates expressed as number of individuals/100 meters from Johansen 

et al. (2016). A “-“ indicates that the metric was not reported. Site ID corresponds to 

Table 1. 

  

Site ID Ne  

(CI) 

Nc (Regression 

method) 

Nc (mark-recapture 

method) 

CF 64.5  

(27.7−∞) 

36 45 

LLC ∞  

(22.6−∞) 

5 - 

MC 785.3  

(53.1−∞) 

36 - 

PoC 913  

(56.0−∞) 

205 168 

WF 1046  

(58.3−∞) 

50 62 

WFLCC 136.6  

(52.7−∞) 

132 163 

Species 

overall 

15.5  

(14.2−16.9) 

49 ± 59 - 
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Figure S1.  Criteria for selecting the number of retained principle components (PCs) and 

clusters for DAPC analysis. Red circles denote values retained in the DAPC analysis a) 

Graphic depicting recommended number of PCs to retain from the optim.a function in 

Adegenet. The a-score is the difference between the proportion of successful 

reassignment and values obtained using random groups retaining different numbers of 

PCs. b) Graph depicting number of retained PCs and explained cumulative variance. c) 

Graph depicting number of cluster and corresponding Bayesian information criterion 

(BIC) score. d) Proportion of individuals of a sampling site assigned to a genetic cluster 

denoted by DAPC (represented as the columns of boxes). The size of the squares 

represents the proportion of the individuals with the scale in the bottom left. Cluster 

letters correspond to Figure 5. e) Bar plot depicting membership probability of each 

individual to a cluster. Each box denotes a preassigned grouping by Site ID and color 

corresponds to cluster color used in Figure 4b-d. Each bar represents an individual and 

membership probability is determined by the 5 retained discriminant eigenvalues 

expressed as a percent.  

  



 

 

 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2.  Maximum likelihood tree recovered for Cambarus pristinus from the 

recovered mitochondrial COI gene showing within clade phylogenetic relationships. 

Support values >50% bootstrap support are shown. Site ID corresponds to Table 1 and 

numbers in parentheses represent number of individuals from that site recovered at that 

node. Numbers in brackets show within clade sequence divergence. 
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Figure S3.  Geographic distribution of the six distinct populations of the Caney Fork 

form inferred from the STRUCTURE and DAPC analyses in relation to specific 

anthropogenic disturbances (strip mining and silviculture) in the region. Colored 

polygons represent a distinct population cluster and the black circle inside denotes a 

collected locality. The size of the black circle denotes the allelic richness recovered for 

each site and corresponds to the scale in the bottom left. 


