Tenn LB 2322 .A9x R-15 R-15 ### REVERSIBLE PRIME NUMBERS A Research Paper Presented To the Graduate Council of Austin Peay State University In Partial Fulfillment of the Requirements for the Degree Master of Arts in Education by Roy Ronald Medlock May, 1968 To the Graduate Council: I am submitting herewith a <u>Research Paper</u> written by Roy Ronald Medlock entitled "Reversible Prime Numbers". I recommend that it be accepted in partial fulfillment of the requirements for the degree of <u>Master of Arts</u>, with a major in <u>Mathematics</u>. William G. Stakes Major Professor Accepted for the Council: William N. Ellis Dean of the Graduate School #### REVERSIBLE PRIMES The applicability of number theory to problems concerning the physical world is extremely rare; but the theory of numbers has, on the other hand, been a strong influence in the development of higher pure mathematics. There are many branches of number theory. Among these is the study of prime numbers and the properties and characteristics they possess. The study of prime numbers, like all branches of number theory, was influenced primarily by man's insatiable curiousity—the drive to know and do everything. The main purpose of this paper is to investigate a subset of the prime numbers, namely reversible primes, and to develop certain interesting ideas and characteristics of reversible prime numbers. Among the positive integers there is a subclass of peculiar importance, the class of primes. A number P is said to be prime if: (1) P>1 (2) P has no positive divisors except 1 and P.1 ^{1&}lt;sub>G. H.</sub> Hardy and E. M. Wright, The Theory of Numbers. (Oxford at the Clarendon Press, 1962), P. 12. Another definition is dependent on the fact that natural numbers may be classified as being either prime, composite, or 1, the number 1 falling into a class by itself, since it is neither prime nor composite. A natural number is prime if it has exactly two different factors, namely 1 and itself.2 The fundamental theorem of arithmetic states that any integer greater than 1 can be expressed as a product of primes, in one and essentially only one. way. Thus the prime numbers are building bricks from which all other integers may be made. Accordingly, the prime numbers have received much study, and considerable efforts have been spent trying to determine the nature of their distribution in the sequence of positive integers. The chief results obtained in antiquity are Euclid's proof of the infinitude of primes and Eratosthenes' sieve for finding all primes below a given integer n.3 Euclid's proof that there are an infinite number of primes has been universally regarded by mathematicians as a model of mathematical elegance. The proof employs the reductio ad absurdum, or indirect method, and runs as follows: Mathematics. (Holt, Rinehard, and Winston, N. Y., 1962), P. 144-145. ²Melvin L. Keedy, <u>Number Systems</u>: A <u>Modern</u> <u>Introduction</u>. (Addison Wesley, Reading, Mass., 1965), P. 43. 3Howard Eves, An Introduction to the History of Winston, N. Y., Assume there is a finite number of primes; P_1 , P_2 , P_3 • • • P_n • Let N be $(P_1 \cdot P_2 \cdot P_3 \cdot \cdot \cdot P_n) + 1$. Since N is greater than 1, it is either prime or composite. If N is prime we have a contradiction since it was assumed that P₁, P₂, P₃ · · · P_n, made up the entire set of prime numbers. If N is composite it has a prime divisor P, but it is not divisible by $P_1 \cdot \cdot \cdot P_n$ since there will always be a remainder of one. Hence it must be divisible by a prime different from those listed. Thus our assumption that the set of prime numbers is finite has led to a contradiction and hence this assumption is false. Therefore the number of primes is infinite.4 Eratosthenes is noted for the following device, known as the sieve, for finding all the prime numbers less than a given number n. One writes down, in order and starting with 3, all the odd numbers less than n. The composite numbers in the sequence are then sifted out by crossing off, from 3, every third number, then from the next remaining number, 5, ^{4&}lt;u>Ibid.</u>, P. 118. every fifth number, then from the next remaining number, 7, every seventh number, from the next remaining number 11, every eleventh number, and so on. In the process some numbers will be crossed off more than once. All the remaining numbers, along with the number 2, constitute the list of primes less than n.⁵ The following table for n = 50 will illustrate this method. A considerable number of primes have the interesting property of reversibility. That is, certain primes yield prime numbers when the digits are reversed. For example, 37 is a reversible prime since its reverse, 73 is a prime. Let us first make some definitions relating to reversible primes. Definition 1: Reversible Prime; Let A represent the digits of a prime number, where i ranges from 1 to n and P = $A_1 \ A_2 \ A_3 \ \cdot \ \cdot \ A_{n-2} \ A_{n-1} \ A_n$. Then P is said to be a reversible prime if and only if the number $Q = A_n \ A_{n-1} \ A_{n-2} \ \cdot \ \cdot \ A_1$ is also a prime number. We shall speak of a reversible prime and its reverse as a "pair" of reversible primes. Ovstein Ore, Number Theory and Its History, (McGraw-Hill Book Co., Inc., N. Y., 1948), PP. 64-67. Note that the single digit primes 2, 3, 5, 7 trivially satisfy the definition of reversible primes. Definition 2: Order; The order of reversible primes is the number of digits of the prime. Hence, 37 is a reversible prime of order two; 143 is a reversible prime of order three; 1009 is a reversible prime of order four, etc. 7 Definition 3: "Symmetrical" reversible primes; Let $P = A_1 A_2 A_3 \cdot \cdot \cdot A_{n-2} A_{n-1} A_n$ be a reversible prime of order n. Then P is said to be a symmetrical prime if and only if $A_1 A_2 \cdot \cdot \cdot A_{n-1} A_n^{=A_n} A_{n-1} \cdot \cdot A_2 A_1$. The number 11 is the only symmetrical prime of order two and there are 15 symmetrical primes of order three. The smallest of these is 101 and the largest is 929.8 Definition 4: Symmetric twin primes; Two symmetric primes of order n, say P and Q (P∠Q), are symmetric twins if and only if $Q - P = 10^{\frac{1}{2}}$. Consider for example the symmetric primes 10501 and 10601. Now, $10601 - 10501 = 100 = 10^2$ and $2 = \frac{5-1}{2}$. Thus these primes are symmetric twins.9 ⁶Niebaum, Jerome, "Bulletin of the Kansas Association of Teachers of Mathematics", April, 1967, P. 27. 7<u>Ibid.</u>, P. 27. ⁸ Ibid. P. 27. ⁹Ibid., P. 27. We have shown that 11 and 101 are symmetric primes of order two and three and hence it would seem reasonable that there exist symmetrical primes of order four. For example, they might appear as 1331 or 3553 (neither of which is prime). Consider the form for a symmetrical prime of order four, say P = abba, where a and b represent digits of the prime. Then the number P has the value 1000 · a + 100 · b + 10 · b + 1 · a = 1001 · a + 110 · b = 11(91 · a + 10 · b) hence P has a factor 11 and therefore cannot be prime. Similarly it can be shown that all symmetric numbers with an even number of digits greater than 2 are not prime. The proof is as follows: Let $P = A_1 A_2 \cdot \cdot \cdot \cdot A_n$; where n is even and n > 2Let $A_1 = A_n$ $A_2 = A_{n-1}$ \vdots $A_{\frac{n}{2}} = A_{\frac{n}{2}+1}$ Then $P = 10^{n-1} \cdot A_1 + 10^{n-2} \cdot A_2 + \cdot \cdot \cdot 10^{n-n} \cdot A_n$ $P = (10^{n-1} + 10^{n-n}) \cdot A_1 + (10^{n-2} + 10^{n-(n-1)}) \cdot A_2 + \cdot \cdot \cdot (10^{\frac{n}{2}} + 10^{\frac{n-2}{2}}) \cdot A_{\frac{n}{2}}$ $P = (10^{n-1} + 1)A_1 + (10^{n-2} + 10)A_2 \cdot \cdot \cdot \cdot \cdot + (10^{\frac{n}{2}} + 10^{-n})A_{\frac{n}{2}}$ ^{10&}lt;u>Ibid.,</u> P. 28. $$P = (10^{n-1} + 1)A_{1} + 10(10^{n-3} + 1)A_{2} \cdot \cdot \cdot + 10^{\frac{n-2}{2}} (10^{1} + 10^{0})A_{\frac{1}{2}}$$ $$P = (10^{n-1} + 1)A_{1} + 10(10^{n-3} + 1)A_{2} \cdot \cdot \cdot + 10^{\frac{n-2}{2}} (11)A_{\frac{1}{2}}$$ From the previous statement we see that $(10^{n-1}+1)$; $(10^{n-3}+1)$...(11) are divisible by 11 because of the divisibility rule for 11. Therefore, P is divisible by 11 and hence not a prime number. Thus the only symmetric prime of an even number of digits is the number 11. There are many somewhat unique sequences of symmetric primes. For example: | | 131 | is | prime, | |-----|-----------|----|--------| | | 10301 | | prime, | | | 1003001 | | prime, | | and | 100030001 | is | prime. | These four numbers have been verified as primes by tables and computers. It would seem that this sequence would continue, but not so. Computers have revealed that: | | 10000300001
10000030000001
1000000300000001
10000000300000001 | is
is | divisible
divisible
divisible
divisible
divisible | by
by | 29 ,
139, | |-----|--|----------|---|----------|---------------------| | and | 10000000300000001 | is | divisible | by | 59.11 | This is a good example to show the fallacy of inductive reasoning. ^{11&}lt;sub>Ibid</sub>., P. 29. The following theorem says that in order for a prime to be reversible it must begin and end with 1, 3, 7, or 9. Let A_1 A_2 • • • A_n be a reversible prime of order n, (n > 1) and let D = $\{1, 3, 7, 9\}$. Then $A_1 \in D$ and $A_n \in D$. The proof runs as follows: Let $F = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Now D C F and D C F, where $D = \{0, 2, 4, 5, 6, 8\}$. We know that $A_1 \in F$. Hence $A_1 \in D$ or $A_1 \in D'$. Assume $A_1 \in D'$. Then $A_1 A_{n-1} \cdot \cdot \cdot A_2 A_1$ must end in 0, 2, 4, 5, 6, or 8, hence it is divisible by 2 or 5 and is not a reversible prime, contrary to hypothesis. Hence we conclude $A_1 \in D$. Similarly $A_n \in D$. It has been proved that sequences such as $\{4_{n-1}\}$, $n=\{1, 2, 3, \ldots\}$, contain an infinite number of primes. This is a special type of arithmetic sequence, $\{A_n+B\}$, which is an arithmetic progression, where $n=\{1, 2, 3, \ldots\}$, and A and B represent fixed numbers. When A and B are relatively prime, the sequence contains an infinite number of primes. This result is known as the theorem of Lejeune-Dirichlet. The above leads to other questions. Consider 10^n+1 , where $n=\{1, 2, 3, \ldots\}$, or 11, 101, 1001, 10001, 100001, etc. Does this contain an infinity of primes? If so, the ^{12&}lt;sub>Ibid.</sub>, P. 29. proof of the following conjectures concerning reversible primes would result. (1) The set of symmetric primes is infinite.(2) The set of reversible primes is infinite. Note that since the set of symmetric primes is a proper subset of the set of reversible primes #2 follows from #1 as a corollary. For symmetrical primes of order 3, 5, and 7, (refer to Appendix II), an increase in order yields an increasing sequence of symmetrical primes. Beginning with the digit 1, there are 5 symmetrical primes of order 3, 26 of order 5, and 189 of order 7. Beginning with the digit 3, there are 4 symmetrical primes of order 3, 24 of order 5, and 171 of order 7. Beginning with the digit 7, there are 4 symmetrical primes of order 3, 23 of order 5, and 155 of order 7. Beginning with the digit 9, there are 2 symmetrical primes of order 3, 18 of order 5, and 150 of order 7. In all there are 15 symmetrical primes of order 3, 96 of order 5, and It seems that this trend of an increasing number of symmetrical primes as the order increases would continue. If this is true, then of course the set of symmetrical primes would be infinite and since the symmetrical primes are a subset of the set of reversible primes, it would follow that the set of reversible primes is infinite. From a list of prime numbers (refer to Appendix I) it can be seen that the prime numbers in the 700's seem to be an extremely fertile source of reversible primes. The number 719 is not reversible since 917 is divisible by 7 and 773 is not reversible since 377 is divisible by 13. These are the only two out of the 14 primes in the 700's which are not reversible. There are 4 reversible primes of order one, 8 of order two, 43 of order three, and 204 of order four. From a list of primes of order four, it is interesting to note that there appears a sequence of 10 consecutive primes, all of which are reversible primes: 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, and 1259. Also of all the order four primes beginning with a 1, 3, 7, or 9 over 42% of them are reversible primes. There are 476 primes of order four and 204 of these are reversible primes. It can be seen that reversible primes are not as rare as might be expected. In fact, it seems that as the order of the prime numbers increases, so does the number of reversible primes. One method of obtaining reversible primes would be to list all prime numbers of a certain order beginning with a 1, 3, 7, or 9 and check the reverse of each number against the list of primes. Of course, this would become very laborious for any order greater than three since the number of primes increases as the order increases. It would become so laborious, in fact, that the aid of a computer would be necessary. Any set of primes of even order will have an even number of reversible primes since no even order set of numbers has a symmetrical prime and therefore each reversible prime of even order will give an entirely different prime number of the same order. No attempt was made in this paper to exhaust the characteristics of reversible primes or conjectures which might be made concerning them. There are still many unanswered questions relative to reversible primes and in all probability some will remain unanswered. The remarks in this paper verify the fact that the set of prime numbers, and especially reversible primes, offers a challenging and interesting study to anyone who is willing to devote the time and effort to this area. Perhaps such a study would fit into a high school mathematics program at some level, such as a part of a mathematics course or even as a topic for discussion in a mathematics club. The study of reversible primes would likely arouse the curiosity of many students and perhaps lead to some important observations and developments in the field of prime numbers. At any rate, the person delving into recreational mathematics will find this topic both refreshing and rewarding. APPENDIX I Reversible Primes | Order One 2 3 5 7 | | | 0:
1.
1.
3.
3. | 3 73
7 79
1 97 | |---|--|--|--|---| | 101
107
113
131
149
151
157
167 | 181
191
199
311
313
337
347
353
359 | Order Three 373 383 389 701 709 727 733 739 743 | 751
757
761
769
787
797
907
919 | 937
941
953
967
971
983
991 | | 1009
1021
1031
1033
1061
1069
1091
1097
1103
1109
1151
1153
1217
1223
12217
1223
1229
1231
1227
1249
1259
1279 | 1283
1301
1321
1381
1399
1409
1429
1439
1453
1471
1487
1499
1511
1523
1559
1583
1597
1601
1619
1657
1669
1723
1733
1741 | Order Four 1753 1789 1811 1831 1847 1867 1879 1901 1913 1933 1949 1979 3011 3019 3023 3049 3067 3083 3089 3109 3121 3163 3169 3191 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 203
221
251
257
271
299
301
319
343
347
359
371
373
389
391
407
433
463
467
469
511
527
541 | | | Order | Four Continued | | |--|--|--|--| | 3583
3613
3643
3697
3719
3733
3767
3803
3821
3851
3853
3889
3911
3917
3929
7027
7043
7057
7121
7177
7187
7193
7207
7219
7229 | 7321
7349
7433
7457
7459
7481
7507
7523
7529
7547
7561
7577
7589
7603
7643
7649
7673
7681
7687
7687
7681
7687
7757
7817
7817 | 7927 7949 7951 7963 9001 9011 9013 9029 9041 9103 9127 9133 9161 9173 9209 9221 9227 9241 9257 9241 9257 9293 9341 9349 9403 9421 9437 | 9479
9491
9497
9521
9533
9547
9551
9601
9613
9661
9679
9749
9769
9781
9787
9781
9803
9833
9857
9883
9823
9931 | | 725 3
7297 | 7879
7 90 1 | 9439
9467 | 9941
996 7 | ## APPENDIX II | Symmetrical | Primes | Order | Three | |-------------|--------|-------|-------| |-------------|--------|-------|-------| | 101
131
151
181
191 | 313
353
373
383 | 727
757
787
797 | 919
929 | |---------------------------------|--------------------------|--------------------------|------------| |---------------------------------|--------------------------|--------------------------|------------| # Symmetrical Primes Order Five | | by mine of Ical | Fillies Order Five | | |---|---|---|--| | 10201
10301
10501
10601
11311
11411
12421
12721
12821
13331
13831
13831
13931
14341
14741
15451
15551
16061
16361
16561
16661 | 30103
30203
30403
30703
30803
31013
31513
32323
32423
32423
32423
34543
34543
34543
35053
35153
35753
35753
36263
36563
36863
37273
37573 | 70207
70507
70607
71317
71917
72227
72727
73037
73237
73637
74047
74747
75557
76367
76667
77377
77477
77977
78487
78787
78887 | 90709
91019
93139
93239
93739
94049
94249
94349
94849
94949
95959
96269
96769
97379
97579
97879
98389
98689 | | 16361
16561
16661 | 36563
36863
3727 3
37573 | 77977
78487
78787
78887 | 9 7 879
98389 | | 17971
18181
18481
19391
19891 | 38083
38183
38783
39293 | 79397
79697
79997 | | # Symmetrical Primes Order Seven | | - | | · CII | |---------|-----------------|---------|----------------------------| | 1003001 | 1278721 | 1580851 | 1876781 | | 1008001 | 1280821 | 1583851 | 1878781 | | 1022201 | 1281821 | 1589851 | 1879781 | | 1028201 | 1286821 | 1594951 | 1880881 | | 1035301 | 1287821 | 1597951 | 1881881 | | 1043401 | 1300031 | 1598951 | 1883881 | | 1055501 | 1303031 | 1600061 | 1884881 | | 1062601 | 1311131 | 1609061 | 1895981 | | 1065601 | 1317131 | 1611161 | 1903091 | | 1074701 | 1327231 | 1616161 | 1908091 | | 1082801 | 1328231 | 1628261 | 1909091 | | 1085801 | 1333331 | 1630361 | 1917191 | | 1092901 | 1335331 | 1633361 | 1924291 | | 1093901 | 1338331 | 1640461 | 1930391 | | 1114111 | 1343431 | 1643461 | 1936391 | | 1117111 | 1360631 | 1646461 | 1941491 | | 1120211 | 1362631 | 1654561 | 1951591 | | 1123211 | 1371731 | 1657561 | 1952951 | | 1126211 | 1374731 | 1658561 | 1957591 | | 1129211 | 1390931 | 1660661 | 1958591 | | 1134311 | 1407041 | 1670761 | 1963691 | | 1145411 | 1409041 | 1684861 | 1968691 | | 1150511 | 1411141 | 1685861 | 1969691 | | 1153511 | 1412141 | 1688861 | 1970791 | | 1160611 | 1422241 | 1695961 | 1976791 | | 1163611 | 1437341 | 1703071 | 1981891 | | 1175711 | 1444441 | 1707071 | 1982891 | | 1177711 | 144744 1 | 1712171 | 1984891 | | 1178711 | 1452541 | 1714171 | 1987891 | | 1180811 | 1456541 | 1730371 | 1988891 | | 1183811 | 1461641 | 1734371 | 1993991 | | 1186811 | 1463641 | 1737371 | 1995991 | | 1190911 | 1464641 | 1748471 | 1998991
30 01003 | | 1193911 | 1469641 | 1755571 | 3002003 | | 1196911 | 1486841 | 1761671 | 3016103 | | 1201021 | 1489841 | 1764671 | 3026203 | | 1208021 | 1490941 | 1777771 | 3064603 | | 1212121 | 1496941 | 1793971 | 3065603 | | 1215121 | 1508051 | 1802081 | 3072703 | | 1218121 | 1513151 | 1805081 | 3073703 | | 1221221 | 1520251 | 1820281 | 3075703 | | 1235321 | 1532351 | 1823281 | 3083803 | | 1242421 | 15353 51 | 1824281 | 3089803 | | 1243421 | 1542451 | 1826281 | 3091903 | | 1245421 | 1548451 | 1829281 | 3095903 | | 1250521 | 1550551 | 1831381 | 3103013 | | 1253521 | 1551551 | 1832381 | 3106013 | | 1257521 | 1556551 | 1842481 | 3127213 | | 1262621 | 1557551 | 1851581 | 3135313 | | 1268621 | 1565651 | 1853581 | 3140413 | | 1273721 | 1572751 | 1856581 | 3155513 | | 1276721 | 1579751 | 1865681 | フェフフンエン | | | エン・フ・フェ | | | | 3158513 | 3417143 | | | |---------|---------|---------|---------| | 3160613 | 3424243 | 3732373 | 7035307 | | | | 3743473 | 7036307 | | 3166613 | 3425243 | 3746473 | | | 3181813 | 3427243 | 3762673 | 7041407 | | 3187813 | 3439343 | 3763673 | 7046407 | | 3193913 | 3441443 | 3765673 | 7057507 | | 3196913 | 3443443 | 3703073 | 7065607 | | | 3444443 | 3768673 | 7069607 | | 3198913 | | 3769673 | 7073707 | | 3211123 | 3447443 | 3773773 | | | 3212123 | 3449443 | 3774773 | 7079707 | | 3218123 | 3452543 | 3781873 | 7082807 | | 3222223 | 3460643 | 3784873 | 7084807 | | 3223223 | 3466643 | | 7087807 | | | | 3792973 | 7093907 | | 3228223 | 3470743 | 3793973 | 7096907 | | 3233323 | 3479743 | 3799973 | 7100017 | | 3236323 | 3485843 | 3804083 | 7114117 | | 3241423 | 3487843 | 3806083 | 7115117 | | 3245423 | 3503053 | 3812183 | | | 3252523 | 3515153 | | 7118117 | | 2356523 | | 3814183 | 7129217 | | | 3517153 | 3826283 | 7134317 | | 3258523 | 3528253 | 3829283 | 7136317 | | 3260623 | 3541453 | 3836383 | 7141417 | | 3267623 | 3553553 | 3842483 | 7145417 | | 3272723 | 3558553 | 3853583 | | | 3283823 | 3563653 | 3858583 | 7155517 | | | | | 7156517 | | 3285823 | 3569653 | 3863683 | 7158517 | | 3286823 | 3586853 | 3864683 | 7159517 | | 3288823 | 3589853 | 3867683 | 7177717 | | 5291923 | 3590953 | 3869683 | 7190917 | | 3293923 | 3591953 | 3871783 | 7194917 | | 3304033 | 3594953 | 3878783 | | | | | 3893983 | 7215127 | | 3305033 | 3601063 | | 7226227 | | 3307033 | 3607063 | 3899983 | 7246427 | | 3310133 | 3618163 | 3913193 | 7249427 | | 3315133 | 3621263 | 3916193 | 7250527 | | 3319133 | 3627263 | 3918193 | 7256527 | | 3321233 | | 3924293 | 7257527 | | | 3635363 | 3927293 | 7261627 | | 3329233 | 3643463 | | 7267627 | | 3331333 | 3646463 | 3931393 | | | 3337333 | 3670763 | 3938393 | 7276727 | | 3343433 | 3673763 | 3942493 | 7278727 | | 3353533 | 3680863 | 3946493 | 7291927 | | 3362633 | | 3948493 | 7300037 | | | 3689863 | 3964693 | 7302037 | | 3364633 | 3698963 | | 7310137 | | 3365633 | 3708073 | 3970793 | 7314137 | | 3368633 | 3709073 | 3983893 | | | 3380833 | 3716173 | 3991993 | 7324237 | | 3391933 | | 3994993 | 7327237 | | | 3717173 | 3997993 | 7347437 | | 3392933 | 3721273 | 3998993 | 7352537 | | 3400043 | 3722273 | 7014107 | 7354537 | | 3411143 | 3728273 | \OT4TO1 | , , , | | | | | | | 7362637 | 7690967 | 707- | | |-----------------|-----------------|---------|---------| | 7365637 | 7693967 | 7977797 | 9320239 | | 7381837 | 7696967 | 7984897 | 9324239 | | 7388837 | 7715177 | 7985897 | 9329239 | | 7392937 | | 7987897 | 9332339 | | | 7718177 | 7996997 | 9338339 | | 7401047 | 7722277 | 9002009 | | | 7403047 | 7729277 | 9015109 | 9351539 | | 7409047 | 7733377 | 9024209 | 9357539 | | 7415147 | 7742477 | 9037309 | 9375739 | | 7434347 | 7747477 | 9042409 | 9384839 | | 7436347 | 7750577 | 9043409 | 9397939 | | 7439347 | 7758577 | | 9400049 | | 7452547 | 7764677 | 9045409 | 9414149 | | 7461647 | 7772777 | 9046409 | 9419149 | | 7466647 | 7774777 | 9049409 | 9433349 | | 7472747 | 7778777 | 9067609 | 9439340 | | 7475747 | | 9073709 | 9440449 | | | 7782877 | 9076709 | 9446449 | | 7485847 | 7783877 | 9078709 | 9451549 | | 7486847 | 7791977 | 9091909 | 9470749 | | 7489847 | 7794977 | 9095909 | 9477749 | | 7493947 | 7807087 | 9103019 | 9492949 | | 7507057 | 78191 87 | 9109019 | 9493949 | | 750805 7 | 7820287 | 9110119 | 9495949 | | 7518157 | 7821287 | 9127219 | 9504059 | | 7519157 | 7831387 | 9128219 | | | 7521257 | 7832387 | 9136319 | 9514159 | | 7527257 | 7838387 | | 9526259 | | 7540457 | 7843487 | 9169619 | 9529259 | | 7562657 | | 9173719 | 9547459 | | | 785058 7 | 9174719 | 9556559 | | 7564657 | 7856587 | 9179719 | 9558559 | | 7576757 | 7865687 | 9185819 | 9561659 | | 7586857 | 7867687 | 9196919 | 9577759 | | 7592957 | 7868687 | 9199919 | 9583859 | | 7594957 | 7873787 | 9200029 | 9585859 | | 7600067 | 7884887 | 9209029 | 9586859 | | 7611167 | 7891987 | 9212129 | 9601069 | | 7619167 | 7897987 | 9217129 | 9602069 | | 7622267 | 7913197 | 9222229 | 9604069 | | 7630367 | 7916197 | 9223229 | 9610169 | | 7632367 | | 9230329 | 0620269 | | 7644467 | 7930397 | | 9624269 | | | 7933397 | 9231329 | 9626269 | | 7654567 | 7935397 | 9255529 | 9632369 | | 7662667 | 7938397 | 9269629 | 9634369 | | 7665667 | 7941497 | 9271729 | | | 7666667 | 7943497 | 9277729 | 9645469 | | 7668667 | 7949497 | 9280829 | 9650569 | | 7669667 | 7957597 | 9286829 | 9657569 | | 7674767 | 7958597 | 9289829 | 9670769 | | 7681867 | 7960697 | 9318139 | 9686869 | | | 7900097 | | | | 9700079
9709079
9711179
9714179
9724279
9727279
9732379
9733379
9743479
9749479
9752579
9752579
9754579
9762679
9770779
9776779
9776779
9776779
9781879
9782879
9782879
9788879
97898879
978989
9817189
9817189
9818189
9817189
9818189
9820289
9836389 | | |---|--| | 9702079 | | | 9776779 | | | 9779779 | | | 9781879 | | | 9782879 | | | 9787879 | | | 9795979 | 9837389 | | | 9845489 | | | 9852589 | | | 9871789 | | | 9888889
9889889 | | | 9896989 | | | 9902099 | | | 9907099 | | | 9908099 | | | 9916199
9918199
9919199
9921299 | | | 9918199 | | | 9911300 | | | 9921299 | | | 9925299 | | | 9927299 | | | 9927299
9931399 | | | 9932300 | | ### BIBLIOGRAPHY Eves, Howard, An Introduction to the History of Mathematics, Holt, Rinehart, and Winston, N. Y., 1962. Hardy, G. H., and Wright, E. M., The Theory of Numbers, Oxford at the Clarendon Press, 1962. Keedy, Mervin L., <u>Number Systems: A Modern Introduction</u>, Addison, Wesley, Reading, Mass., 1965. Niebaum, Jerome, "Bulletin of the Kansas Association of Teachers of Mathematics", April, 1967. Ore, Oystein, <u>Mumber</u> Theory and Its <u>History</u>, McGraw-Hill Book Go., Inc., N. Y., 1948.